首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we investigate blow up criteria for the local smooth solutions to the 3D incompressible nematic liquid crystal flows via the components of the gradient velocity field \(\nabla u\) and the gradient orientation field \(\nabla d\). More precisely, we show that \(0< T_{ \ast}<+\infty\) is the maximal time interval if and only if
$$\begin{aligned} & \int_{0}^{T_{\ast}} \bigl\Vert \Vert \partial_{i}u\Vert _{L_{x_{i}} ^{\gamma}} \bigr\Vert _{L_{x_{j}x_{k}}^{\alpha}}^{\beta}+ \|\nabla d\| _{L^{\infty}}^{\frac{8}{3}}\mathrm{d}t=\infty, \\ &\quad\text{ with } \frac{2}{\alpha}+\frac{2}{\beta}\leq\frac{3\alpha +2}{4\alpha}, \text{ and } 1\leq\gamma\leq\alpha,2< \alpha\leq+\infty, \end{aligned}$$
or
$$\begin{aligned} \int_{0}^{T_{\ast}}\|\partial_{3}u_{3} \|^{\beta}_{L^{\alpha}}+\| \nabla d\|^{\frac{8}{3}}_{L^{\infty}} \mathrm{d}t=\infty,\quad\text{with } \frac{3}{\alpha}+\frac{2}{\beta}\leq \frac{3(\alpha+2)}{4 \alpha}, \text{ and } 2< \alpha\leq\infty, \end{aligned}$$
where \(i,j,k\in\{1,2,3\}\), \(i\neq j\), \(i\neq k\), and \(j\neq k\).
  相似文献   

2.
In this paper, we will prove (resp. study) the Baire generic validity of the upper-Hölder (resp. iso-Hölder) mixed wavelet leaders multifractal formalism on a product of two critical Besov spaces \(B_{t_{1}}^{\frac{m}{t_{1}},q_{1}}(\mathbb {R}^m) \times B_{t_{2}}^{\frac{m}{t_{2}},q_{2}}(\mathbb {R}^m)\), for \(t_1,t_2>0\), \(q_1 \le 1\) and \(q_2 \le 1\). Contrary to product spaces \(B_{t_{1}}^{s_{1},\infty }(\mathbb {R}^m) \times B_{t_{2}}^{s_{2},\infty }(\mathbb {R}^m) \) with \(s_{1} > \frac{m}{t_{1}}\) and \(s_{2} >\frac{m}{t_{2}}\) (Ben Slimane in Mediterr J Math, 13(4):1513–1533, 2016) and \((B_{t_{1}}^{s_{1},\infty }(\mathbb {R}^m) \cap C^{\gamma _{1}}(\mathbb {R}^m)) \times (B_{t_{2}}^{s_{2},\infty }(\mathbb {R}^m) \cap C^{\gamma _{2}}(\mathbb {R}^m)\) with \(0<\gamma _{1}<s_{1}<\frac{m}{t_{1}}\) and \(0<\gamma _{2}<s_{2}<\frac{m}{t_{2}}\) (Ben Abid et al. in Mediterr J Math, 13(6):5093–5118, 2016), all pairs of functions in the obtained generic set are not uniform Hölder. Nevertheless, the characterization of the upper bound of the Hölder exponent by decay conditions of local wavelet leaders suffices for our study.  相似文献   

3.
The purpose of this paper is threefold. First, we prove sharp singular affine Moser–Trudinger inequalities on both bounded and unbounded domains in \({\mathbb {R}}^{n}\). In particular, we will prove the following much sharper affine Moser–Trudinger inequality in the spirit of Lions (Rev Mat Iberoamericana 1(2):45–121, 1985) (see our Theorem 1.4): Let \(\alpha _{n}=n\left( \frac{n\pi ^{\frac{n}{2}}}{\Gamma (\frac{n}{2}+1)}\right) ^{\frac{1}{n-1}}\), \(0\le \beta <n\) and \(\tau >0\). Then there exists a constant \(C=C\left( n,\beta \right) >0\) such that for all \(0\le \alpha \le \left( 1-\frac{\beta }{n}\right) \alpha _{n}\) and \(u\in C_{0}^{\infty }\left( {\mathbb {R}}^{n}\right) \setminus \left\{ 0\right\} \) with the affine energy \(~{\mathcal {E}}_{n}\left( u\right) <1\), we have
$$\begin{aligned} {\displaystyle \int \nolimits _{{\mathbb {R}}^{n}}} \frac{\phi _{n,1}\left( \frac{2^{\frac{1}{n-1}}\alpha }{\left( 1+{\mathcal {E}}_{n}\left( u\right) ^{n}\right) ^{\frac{1}{n-1}}}\left| u\right| ^{\frac{n}{n-1}}\right) }{\left| x\right| ^{\beta }}dx\le C\left( n,\beta \right) \frac{\left\| u\right\| _{n}^{n-\beta }}{\left| 1-{\mathcal {E}}_{n}\left( u\right) ^{n}\right| ^{1-\frac{\beta }{n}}}. \end{aligned}$$
Moreover, the constant \(\left( 1-\frac{\beta }{n}\right) \alpha _{n}\) is the best possible in the sense that there is no uniform constant \(C(n, \beta )\) independent of u in the above inequality when \(\alpha >\left( 1-\frac{\beta }{n}\right) \alpha _{n}\). Second, we establish the following improved Adams type inequality in the spirit of Lions (Theorem 1.8): Let \(0\le \beta <2m\) and \(\tau >0\). Then there exists a constant \(C=C\left( m,\beta ,\tau \right) >0\) such that
$$\begin{aligned} \underset{u\in W^{2,m}\left( {\mathbb {R}}^{2m}\right) , \int _{ {\mathbb {R}}^{2m}}\left| \Delta u\right| ^{m}+\tau \left| u\right| ^{m} \le 1}{\sup } {\displaystyle \int \nolimits _{{\mathbb {R}}^{2m}}} \frac{\phi _{2m,2}\left( \frac{2^{\frac{1}{m-1}}\alpha }{\left( 1+\left\| \Delta u\right\| _{m}^{m}\right) ^{\frac{1}{m-1}}}\left| u\right| ^{\frac{m}{m-1}}\right) }{\left| x\right| ^{\beta }}dx\le C\left( m,\beta ,\tau \right) , \end{aligned}$$
for all \(0\le \alpha \le \left( 1-\frac{\beta }{2m}\right) \beta (2m,2)\). When \(\alpha >\left( 1-\frac{\beta }{2m}\right) \beta (2m,2)\), the supremum is infinite. In the above, we use
$$\begin{aligned} \phi _{p,q}(t)=e^{t}- {\displaystyle \sum \limits _{j=0}^{j_{\frac{p}{q}}-2}} \frac{t^{j}}{j!},\,\,\,j_{\frac{p}{q}}=\min \left\{ j\in {\mathbb {N}} :j\ge \frac{p}{q}\right\} \ge \frac{p}{q}. \end{aligned}$$
The main difficulties of proving the above results are that the symmetrization method does not work. Therefore, our main ideas are to develop a rearrangement-free argument in the spirit of Lam and Lu (J Differ Equ 255(3):298–325, 2013; Adv Math 231(6): 3259–3287, 2012), Lam et al. (Nonlinear Anal 95: 77–92, 2014) to establish such theorems. Third, as an application, we will study the existence of weak solutions to the biharmonic equation
$$\begin{aligned} \left\{ \begin{array}{l} \Delta ^{2}u+V(x)u=f(x,u)\text { in }{\mathbb {R}}^{4}\\ u\in H^{2}\left( {\mathbb {R}}^{4}\right) ,~u\ge 0 \end{array} \right. , \end{aligned}$$
where the nonlinearity f has the critical exponential growth.
  相似文献   

4.
Let {X n ; n≥1} be a sequence of independent copies of a real-valued random variable X and set S n =X 1+???+X n , n≥1. This paper is devoted to a refinement of the classical Kolmogorov–Marcinkiewicz–Zygmund strong law of large numbers. We show that for 0<p<2,
$\sum_{n=1}^{\infty}\frac{1}{n}\biggl(\frac{|S_{n}|}{n^{1/p}}\biggr)<\infty\quad \mbox{almost surely}$
if and only if
$\begin{cases}\mathbb{E}|X|^{p}<\infty &; \mbox{if }0 < p < 1,\\\mathbb{E}X=0,\ \sum_{n=1}^{\infty}\frac{|\mathbb{E}XI\{|X|\leq n\}|}{n}<\infty,\mbox{ and }\\\sum_{n=1}^{\infty}\frac{\int_{\min\{u_{n},n\}}^{n}\mathbb{P}(|X|>t)\,dt}{n}<\infty &; \mbox{if }p = 1,\\\mathbb{E}X=0\mbox{ and }\int_{0}^{\infty}\mathbb{P}^{1/p}(|X|>t)\,dt<\infty,&;\mbox{if }1 < p < 2,\end{cases}$
where \(u_{n}=\inf \{t:~\mathbb{P}(|X|>t)<\frac{1}{n}\}\), n≥1. Versions of the above result in a Banach space setting are also presented. To establish these results, we invoke the remarkable Hoffmann-Jørgensen (Stud. Math. 52:159–186, 1974) inequality to obtain some general results for sums of the form \(\sum_{n=1}^{\infty}a_{n}\|\sum_{i=1}^{n}V_{i}\|\) (where {V n ; n≥1} is a sequence of independent Banach-space-valued random variables, and a n ≥0, n≥1), which may be of independent interest, but which we apply to \(\sum_{n=1}^{\infty}\frac{1}{n}(\frac{|S_{n}|}{n^{1/p}})\).
  相似文献   

5.
Let \(p\in (1,\infty )\) and \(q\in [1,\infty )\). In this article, the authors characterize the Triebel-Lizorkin space \({F}^{\alpha }_{p,q}(\mathbb {R}^{n})\) with smoothness order α ∈ (0, 2) via the Lusin-area function and the \(g_{\lambda }^{*}\)-function in terms of difference between f(x) and its ball average \(B_{t}f(x):=\frac 1{|B(x,t)|}{\int }_{B(x,t)}f(y)\,dy\) over the ball B(x, t) centered at \(x\in \mathbb {R}^{n}\) with radius t ∈ (0, 1). As an application, the authors obtain a series of characterizations of \(F^{\alpha }_{p,\infty }(\mathbb {R}^{n})\) via pointwise inequalities, involving ball averages, in spirit close to Haj?asz gradients, here some interesting phenomena naturally appear that, in the end-point case when α = 2, some of these pointwise inequalities characterize the Triebel-Lizorkin spaces \(F^{2}_{p,2}(\mathbb {R}^{n})\), while not \(F^{2}_{p,\infty }(\mathbb {R}^{n})\), and that some of other obtained pointwise characterizations are only known to hold true for \(F^{\alpha }_{p,\infty }(\mathbb {R}^{n})\) with \(p\in (1,\infty )\), α ∈ (0, 2) or α ∈ (n/p, 2). In particular, some new pointwise characterizations of Haj?asz-Sobolev spaces via ball averages are obtained. Since these new characterizations only use ball averages, they can be used as starting points for developing a theory of Triebel-Lizorkin spaces with smoothness orders not less than 1 on spaces of homogeneous type.  相似文献   

6.
Mohsen Kian 《Positivity》2018,22(3):773-781
The famous Hardy inequality asserts that if f is a non-negative p-integrable \((p>1)\) function on \((0,\infty )\), then
$$\begin{aligned} \int _{0}^{\infty }\left( \frac{1}{x}\int _{0}^{x}f(t)dt\right) ^pdx\le \left( \frac{p}{p-1}\right) ^p\int _{0}^{\infty }f(x)^pdx. \end{aligned}$$
We present an external form of the Hardy inequality for Hilbert space operators. Moreover, utilizing the operator log-convex functions, a refinement of the operator Hardy inequality is also given.
  相似文献   

7.
In this note we investigate the function \(B_{k,\ell }(n)\), which counts the number of \((k,\ell )\)-regular bipartitions of n. We shall prove an infinite family of congruences modulo 11: for \(\alpha \ge 2\) and \(n\ge 0\),
$$\begin{aligned} B_{3,11}\left( 3^{\alpha }n+\frac{5\cdot 3^{\alpha -1}-1}{2}\right) \equiv 0\ (\mathrm{mod\ }11). \end{aligned}$$
  相似文献   

8.
The Berezin symbol à of an operator A acting on the reproducing kernel Hilbert space H = H(Ω) over some (nonempty) set is defined by \(\tilde A(\lambda ) = \left\langle {A\hat k_\lambda ,\hat k_\lambda } \right\rangle \), λ ∈ Ω, where \(\hat k_\lambda = k_\lambda /\left\| {k_\lambda } \right\|\) is the normalized reproducing kernel of H. The Berezin number of the operator A is defined by \(ber(A) = \mathop {\sup }\limits_{\lambda \in \Omega } \left| {\tilde A(\lambda )} \right| = \mathop {\sup }\limits_{\lambda \in \Omega } \left| {\left\langle {A\hat k_\lambda ,\hat k_\lambda } \right\rangle } \right|\). Moreover, ber(A) ? w(A) (numerical radius). We present some Berezin number inequalities. Among other inequalities, it is shown that if \(T = \left[ {\begin{array}{*{20}c} A & B \\ C & D \\ \end{array} } \right] \in \mathbb{B}(\mathcal{H}(\Omega _1 ) \oplus \mathcal{H}(\Omega _2 ))\), then
$$ber(T) \leqslant \frac{1}{2}(ber(A) + ber(D)) + \frac{1}{2}\sqrt {(ber(A) - ber(D))^2 + \left( {\left\| B \right\| + \left\| C \right\|} \right)^2 } .$$
  相似文献   

9.
For a real-valued continuous function f(x) on \([0,\infty )\), we define
$$\begin{aligned} s(x)=\int _{0}^{x} f(u)du\quad \text {and}\quad \sigma _{\alpha } (x)= \int _{0}^{x}\left( 1-\frac{u}{x}\right) ^{\alpha }f(u)du \end{aligned}$$
for \(x>0\). We say that \(\int _{0}^{\infty } f(u)du\) is \((C, \alpha )\) integrable to L for some \(\alpha >-1\) if the limit \(\lim _{x \rightarrow \infty } \sigma _{\alpha } (x)=L\) exists. It is known that \(\lim _{x \rightarrow \infty } s(x) =L\) implies \(\lim _{x \rightarrow \infty }\sigma _{\alpha } (x) =L\) for all \(\alpha >-1\). The aim of this paper is twofold. First, we introduce some new Tauberian conditions for the \((C, \alpha )\) integrability method under which the converse implication is satisfied, and improve classical Tauberian theorems for the \((C,\alpha )\) integrability method. Next we give short proofs of some classical Tauberian theorems as special cases of some of our results.
  相似文献   

10.
We study the existence and multiplicity of sign-changing solutions of the following equation
$$\begin{array}{@{}rcl@{}} \left\{\begin{array}{lllllllll} -{\Delta} u = \mu |u|^{2^{\star}-2}u+\frac{|u|^{2^{*}(t)-2}u}{|x|^{t}}+a(x)u \quad\text{in}\, {\Omega}, \\ u=0 \quad\text{on}\quad\partial{\Omega}, \end{array}\right. \end{array} $$
where Ω is a bounded domain in \(\mathbb {R}^{N}\), 0∈?Ω, all the principal curvatures of ?Ω at 0 are negative and μ≥0, a>0, N≥7, 0<t<2, \(2^{\star }=\frac {2N}{N-2}\) and \(2^{\star }(t)=\frac {2(N-t)}{N-2}\).
  相似文献   

11.
In this paper we study four-dimensional \((m,\rho )\)-quasi-Einstein manifolds with harmonic Weyl curvature when \(m\notin \{0,\pm 1,-2,\pm \infty \}\) and \(\rho \notin \{\frac{1}{4},\frac{1}{6}\}\). We prove that a non-trivial \((m,\rho )\)-quasi-Einstein metric g (not necessarily complete) is locally isometric to one of the following: (i) \({\mathcal {B}}^2_\frac{R}{2(m+2)}\times {\mathbb {N}}^2_\frac{R(m+1)}{2(m+2)}\), where \({\mathcal {B}}^2_\frac{R}{2(m+2)}\) is the northern hemisphere in the two-dimensional (2D) sphere \({\mathbb {S}}^2_\frac{R}{2(m+2)}\), \({\mathbb {N}}_\delta \) is a 2D Riemannian manifold with constant curvature \(\delta \), and R is the constant scalar curvature of g. (ii) \({\mathcal {D}}^2_\frac{R}{2(m+2)}\times {\mathbb {N}}^2_\frac{R(m+1)}{2(m+2)}\), where \({\mathcal {D}}^2_\frac{R}{2(m+2)}\) is half (cut by a hyperbolic line) of hyperbolic plane \({\mathbb {H}}^2_\frac{R}{2(m+2)}\). (iii) \({\mathbb {H}}^2_\frac{R}{2(m+2)}\times {\mathbb {N}}^2_\frac{R(m+1)}{2(m+2)}\). (iv) A certain singular metric with \(\rho =0\). (v) A locally conformal flat metric. By applying this local classification, we obtain a classification of the complete \((m,\rho )\)-quasi-Einstein manifolds given the condition of a harmonic Weyl curvature. Our result can be viewed as a local classification of gradient Einstein-type manifolds. A corollary of our result is the classification of \((\lambda ,4+m)\)-Einstein manifolds, which can be viewed as (m, 0)-quasi-Einstein manifolds.  相似文献   

12.
Let \(\vec {P}=(p_{1},\dotsc ,p_{m})\) with 1 < p 1, …, p m < , 1/p 1+?+1/p m =1/p and \(\vec {w}=(w_{1},\dotsc ,w_{m})\in A_{\vec {P}}\). In this paper, we investigate the weighted bounds with dependence on aperture α for multilinear square functions \(S_{\alpha ,\psi }(\vec {f})\). We show that
$$\|S_{\alpha,\psi}(\vec{f})\|_{L^{p}(\nu_{\vec{w}})} \leq C_{n,m,\psi,\vec{P}} \alpha^{mn}[\vec{w}]_{A_{\vec{P}}}^{\max(\frac{1}{2},\tfrac{p_{1}^{\prime}}{p},\dotsc,\tfrac{p_{m}^{\prime}}{p})} \prod\limits_{i=1}^{m} \|f_{i}\|_{L^{p_{i}}(w_{i})}. $$
This result extends the result in the linear case which was obtained by Lerner in 2014. Our proof is based on the local mean oscillation technique presented firstly to find the weighted bounds for Calderón–Zygmund operators. This method helps us avoiding intrinsic square functions in the proof of our main result.  相似文献   

13.
We study the positive solution \({u(r,\rho)}\) of the quasilinear elliptic equation
$$\begin{cases}r^{-(\gamma-1)}(r^{\alpha}|u^{\prime}|^{\beta-1}u^{\prime})^{\prime}+|u|^{p-1}u=0, & 0 < r < \infty,\\ u(0) = \rho > 0,\ u^{\prime}(0)=0.\end{cases}$$
This class of differential operators includes the usual Laplace, m-Laplace, and k-Hessian operators in the space of radial functions. The equation has a singular positive solution u *(r) under certain conditions on \({\alpha}\), \({\beta}\), \({\gamma}\), and p. A generalized Joseph–Lundgren exponent, which we denote by \({p^*_{JL}}\), is obtained. We study the intersection numbers between \({u(r,\rho)}\) and u *(r) and between \({u(r,\rho_0)}\) and \({u(r,\rho_1)}\), and see that \({p^*_{JL}}\) plays an important role. We also determine the bifurcation diagram of the problem
$$\begin{cases}r^{-(\gamma-1)}(r^{\alpha}|u^{\prime}|^{\beta-1}u^{\prime})^{\prime} + \lambda(u+1)^p=0, & 0 < r < 1,\\ u(r) > 0, & 0 \le r < 1,\\ u^{\prime}(0)=0,\ u(1)=0.\end{cases}$$
The main technique used in the proofs is a phase plane analysis.
  相似文献   

14.
We consider the problem
$$\begin{aligned} -\Delta u+\left( V_{\infty }+V(x)\right) u=|u|^{p-2}u,\quad u\in H_{0} ^{1}(\Omega ), \end{aligned}$$
where \(\Omega \) is either \(\mathbb {R}^{N}\) or a smooth domain in \(\mathbb {R} ^{N}\) with unbounded boundary, \(N\ge 3,\) \(V_{\infty }>0,\) \(V\in \mathcal {C} ^{0}(\mathbb {R}^{N}),\) \(\inf _{\mathbb {R}^{N}}V>-V_{\infty }\) and \(2<p<\frac{2N}{N-2}\). We assume V is periodic in the first m variables, and decays exponentially to zero in the remaining ones. We also assume that \(\Omega \) is periodic in the first m variables and has bounded complement in the other ones. Then, assuming that \(\Omega \) and V are invariant under some suitable group of symmetries on the last \(N-m\) coordinates of \(\mathbb {R}^{N}\), we establish existence and multiplicity of sign-changing solutions to this problem. We show that, under suitable assumptions, there is a combined effect of the number of periodic variables and the symmetries of the domain on the number of sign-changing solutions to this problem. This number is at least \(m+1\)
  相似文献   

15.
In this paper the inequality
$$\begin{aligned} \bigg ( \int _0^{\infty } \bigg ( \int _x^{\infty } \bigg ( \int _t^{\infty } h \bigg )^q w(t)\,dt \bigg )^{r / q} u(x)\,{ ds} \bigg )^{1/r}\le C \,\int _0^{\infty } h v, \quad h \in {\mathfrak {M}}^+(0,\infty ) \end{aligned}$$
is characterized. Here \(0< q ,\, r < \infty \) and \(u,\,v,\,w\) are weight functions on \((0,\infty )\).
  相似文献   

16.
For the linear positive Korovkin operator \(f\left( x \right) \to {t_n}\left( {f;x} \right) = \frac{1}{\pi }\int_{ - \pi }^\pi {f\left( {x + t} \right)E\left( t \right)dt} \), where E(x) is the Egervary–Szász polynomial and the corresponding interpolation mean \({t_{n,N}}\left( {f;x} \right) = \frac{1}{N}\sum\limits_{k = - N}^{N - 1} {{E_n}\left( {x - \frac{{\pi k}}{N}} \right)f\left( {\frac{{\pi k}}{N}} \right)} \), the Jackson-type inequalities \(\left\| {{t_{n,N}}\left( {f;x} \right) - f\left( x \right)} \right\| \leqslant \left( {1 + \pi } \right){\omega _f}\left( {\frac{1}{n}} \right),\left\| {{t_{n,N}}\left( {f;x} \right) - f\left( x \right)} \right\| \leqslant 2{\omega _f}\left( {\frac{\pi }{{n + 1}}} \right)\), where ωf (x) denotes the modulus of continuity, are proved for N > n/2. For ωf (x) ≤ Mx, the inequality \(\left\| {{t_{n,N}}\left( {f;x} \right) - f\left( x \right)} \right\| \leqslant \frac{{\pi M}}{{n + 1}}\). is established. As a consequence, an elementary derivation of an asymptotically sharp estimate of the Kolmogorov width of a compact set of functions satisfying the Lipschitz condition is obtained.  相似文献   

17.
Let \(n\ge 2\) and \(g_{\lambda }^{*}\) be the well-known high-dimensional Littlewood–Paley function which was defined and studied by E. M. Stein,
$$\begin{aligned} g_{\lambda }^{*}(f)(x) =\bigg (\iint _{\mathbb {R}^{n+1}_{+}} \Big (\frac{t}{t+|x-y|}\Big )^{n\lambda } |\nabla P_tf(y,t)|^2 \frac{\mathrm{d}y \mathrm{d}t}{t^{n-1}}\bigg )^{1/2}, \ \quad \lambda > 1, \end{aligned}$$
where \(P_tf(y,t)=p_t*f(y)\), \(p_t(y)=t^{-n}p(y/t)\), and \(p(x) = (1+|x|^2)^{-(n+1)/2}\), \(\nabla =(\frac{\partial }{\partial y_1},\ldots ,\frac{\partial }{\partial y_n},\frac{\partial }{\partial t})\). In this paper, we give a characterization of two-weight norm inequality for \(g_{\lambda }^{*}\)-function. We show that \(\big \Vert g_{\lambda }^{*}(f \sigma ) \big \Vert _{L^2(w)} \lesssim \big \Vert f \big \Vert _{L^2(\sigma )}\) if and only if the two-weight Muckenhoupt \(A_2\) condition holds, and a testing condition holds:
$$\begin{aligned} \sup _{Q : \text {cubes}~\mathrm{in} \ {\mathbb {R}^n}} \frac{1}{\sigma (Q)} \int _{{\mathbb {R}^n}} \iint _{\widehat{Q}} \Big (\frac{t}{t+|x-y|}\Big )^{n\lambda }|\nabla P_t(\mathbf {1}_Q \sigma )(y,t)|^2 \frac{w \mathrm{d}x \mathrm{d}t}{t^{n-1}} \mathrm{d}y < \infty , \end{aligned}$$
where \(\widehat{Q}\) is the Carleson box over Q and \((w, \sigma )\) is a pair of weights. We actually prove this characterization for \(g_{\lambda }^{*}\)-function associated with more general fractional Poisson kernel \(p^\alpha (x) = (1+|x|^2)^{-{(n+\alpha )}/{2}}\). Moreover, the corresponding results for intrinsic \(g_{\lambda }^*\)-function are also presented.
  相似文献   

18.
19.
We study the break-down mechanism of smooth solution for the gravity water-wave equation of infinite depth. It is proved that if the mean curvature κ of the free surface Σt, the trace(V, B) of the velocity at the free surface, and the outer normal derivative ?P/?n of the pressure P satisfy sup t∈[0,T]||κ(t)||~(Lp∩L~2+∫~T_0||(▽V, ▽B)(t)||~6_(L∞)dt+∞,inf (t,x,y)∈[0,T]×Σ_t-?P/?n(t, x, y)≥c0,for some p 2d and c_0 0, then the solution can be extended after t = T.  相似文献   

20.
In this paper we use basic properties of strongly convex functions to obtain new inequalities including Jensen type and Jensen–Mercer type inequalities. Applications for special means are pointed out as well. We also give a Jensen’s operator inequality for strongly convex functions. As a corollary, we improve the Hölder-McCarthy inequality under suitable conditions. More precisely we show that if \(Sp\left( A \right) \subset \left( 1,\infty \right) \), then
$$\begin{aligned} {{\left\langle Ax,x \right\rangle }^{r}}\le \left\langle {{A}^{r}}x,x \right\rangle -\frac{{{r}^{2}}-r}{2}\left( \left\langle {{A}^{2}}x,x \right\rangle -{{\left\langle Ax,x \right\rangle }^{2}} \right) ,\quad r\ge 2 \end{aligned}$$
and if \(Sp\left( A \right) \subset \left( 0,1 \right) \), then
$$\begin{aligned} \left\langle {{A}^{r}}x,x \right\rangle \le {{\left\langle Ax,x \right\rangle }^{r}}+\frac{r-{{r}^{2}}}{2}\left( {{\left\langle Ax,x \right\rangle }^{2}}-\left\langle {{A}^{2}}x,x \right\rangle \right) ,\quad 0<r<1 \end{aligned}$$
for each positive operator A and \(x\in \mathcal {H}\) with \(\left\| x \right\| =1\).
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号