首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The distribution in the canine medulla oblongata of binding sites for p-[3H]aminoclonidine, a ligand specific for alpha 2-adrenergic receptors, was studied with light microscopic autoradiographic methods. Specific labelling was determined using unlabelled phentolamine as a displacer. The greatest density of sites was localized in the dorsal motor nucleus of the vagus nerve, the area postrema, and in several regions of the nucleus tractus solitarius. Less dense binding of the radioligand was also seen in the inferior olivary nucleus. Dorsomedial regions of the nucleus tractus solitarius were the most densely labelled in this nucleus, and dorsolateral and ventral regions were much less densely labelled. The region of the nucleus tractus solitarius shown in this study to be heavily labelled with alpha 2-adrenergic binding sites has been implicated in the autonomic control of blood pressure. The dorsal motor nucleus of the vagus, together with the nucleus tractus solitarius, may thus represent the site of the antihypertensive action of the drug clonidine, an alpha 2-adrenoreceptor agonist.  相似文献   

2.
(1) In the present study the occlusion method was employed to evaluate the overall coexistence of neuropeptide Y and phenylethanolamine-N-methyl transferase, neuropeptide Y and tyrosine hydroxylase as well as cholecystokinin and phenylethanolamine-N-methyl transferase immunoreactivity in nerve cell bodies of the dorsal subnuclei of the nucleus tractus solitarius of the male rat. A high degree of coexistence was established for neuropeptide Y/phenylethanolamine-N-methyl transferase, cholecystokinin/phenylethanolamine-N-methyl transferase and for tyrosine hydroxylase/neuropeptide Y immunoreactivity. (2) Sulfated [12I]cholecystokinin-8 was used as radioligand to study the densities of cholecystokinin-8 binding sites in the dorsal medulla oblongata by means of quantitative receptor autoradiography. High densities of binding sites were observed in parts of the nucleus tractus solitarius and in the area postrema. Labeling was also observed in the dorsal motor nucleus of the vagus. (3) In the physiological studies adrenaline (0.15–1.0 nmol), neuropeptide Y (0.075–0.75 nmol) and sulfated cholecystokinin-8 (0.3–3.0 nmol) were administered alone or in combination with neuropeptide Y or adrenaline intracisternally into -chloralose anaesthetized male rats. Especially the hypotensive and bradycardic responses of adrenaline were counteracted in the adrenaline/cholecystokinin co-treated animals, whereas the cardiovascular effects of neuropeptide Y when co-administered with cholecystokinin-8 (0.3 nmol) appeared to be more resistant to the antagonistic effect of cholecystokinin 8. In addition, cholecystokinin-8 further enhanced the neuropeptide Y-induced bradynpnea and increase in the tidal volume.

The present results indicate the existence of neuropeptide Y, adrenaline and cholecystokinin-8 immunoreactivity in the same neurons of the dorsal subnuclei of the nucleus tractus solitarius. Furthermore, binding sites for cholecystokinin-8 seem to at least partly co-distribute with -2 adrenergic and neuropeptide Y binding sites in the nucleus tractus solitarius. In the functional analysis, an antagonistic interaction between cholecystokinin-8 and adrenaline as well as between cholecystokinin and neuropeptide Y is demonstrated opening up the possibility that cholecystokinin peptides act as intrinsic modulators in the putative cholecystokinin/neuropeptide Y/adrenaline synapses in the nucleus tractus solitarius.  相似文献   


3.
We evaluated whether pericardial injections of the retrograde tracers cholera toxin subunit B (CTb) or Fast Blue (FB) reliably labelled cardiac vagal pre-ganglionic neurons. Injections of CTb into the pericardial space of the rat labelled neurons in both the external and compact formations of the nucleus ambiguus. Most labelled neurons were found in the compact formation of the nucleus ambiguus, and the majority of these, and only these, expressed immunoreactivity for calcitonin gene-related peptide. This distribution of labelled neurons and their immunohistochemical properties is characteristic of oesophageal motoneurons. Examination of the oesophagus following intra-pericardial CTb applications revealed strong labelling of motor end plates within the skeletal muscle of the thoracic but not the abdominal oesophagus. When a second retrograde tracer, FB, was injected into the abdominal oesophagus, labelled somata were found adjacent to CTb-labelled neurons in the compact formation of the nucleus ambiguus. No co-localisation of tracers was found, but identical proportions of calcitonin gene-related peptide (CGRP) immunoreactivity were observed in both groups of neurons. FB injected into the pericardial space labelled intra-cardiac neurons but not brainstem neurons. We conclude that intra-pericardial, and perhaps sub-epicardial, injections of some retrograde tracers are likely to label a subset of oesophageal, as well as cardiac, vagal motor neurons in the brainstem.This work was supported in part by grant No. G 00 M 0670 from the National Heart Foundation of Australia.  相似文献   

4.
Triple fluorescence labelling was employed to reveal the distribution of chemically identified neurons within the pontine laterodorsal tegmental nucleus and dorsal raphe nucleus which supply branching collateral input to the central nucleus of the amygdala and hypothalamic paraventricular nucleus. The chemical identity of neurons in the laterodorsal tegmental nucleus was revealed by immunocytochemical detection of choline-acetyltransferase or substance P; in the dorsal raphe nucleus, the chemical content of the neurons was revealed with antibody recognizing serotonin. The projections were defined by injections of two retrograde tracers, rhodamine-and fluorescein-labelled latex microspheres, in the central nucleus of the amygdala and paraventricular nucleus, respectively. Neurons projecting to both the central nucleus of the amygdala and the paraventricular nucleus were distributed primarily within the caudal extensions of the laterodorsal tegmental nucleus and dorsal raphe nucleus. Approximately 11% and 7% of the labelled cells in the laterodorsal tegmental nucleus and dorsal raphe nucleus projected via branching collaterals to the paraventricular nucleus and central nucleus of the amygdala. About half of these neurons in the laterodorsal tegmental nucleus were cholinergic, and one-third were substance-P-ergic; in the dorsal raphe nucleus, approximately half of the neurons containing both retrograde tracers were serotonergic. These results indicate that pontine neurons may simultaneously transmit signals to the central nucleus of the amygdala and paraventricular nucleus and that several different neuroactive substances are found in the neurons participating in these pathways. This coordinated signalling may lead to synchronized responses of the central nucleus of the amygdala and paraventricular nucleus for the maintenance of homeostasis. Interactions between different neuroactive substances at the target site may serve to modulate the responses of individual neurons.  相似文献   

5.
Previous anatomical studies demonstrated vagal innervation to the ovary and distal colon and suggested the vagus nerve has uterine inputs. Recent behavioral and physiological evidence indicated that the vagus nerves conduct sensory information from the uterus to the brainstem. The present study was undertaken to identify vagal sensory connections to the uterus. Retrograde tracers, Fluorogold and pseudorabies virus were injected into the uterus and cervix. DiI, an anterograde tracer, was injected into the nodose ganglia. Neurectomies involving the pelvic, hypogastric, ovarian and abdominal vagus nerves were performed, and then uterine whole-mounts examined for sensory nerves containing calcitonin gene-related peptide. Nodose ganglia and caudal brainstem sections were examined for the presence of estrogen receptor-containing neurons in ”vagal locales." Labeling of uterine-related neurons in the nodose ganglia (Fluorogold and pseudorabies virus) and in the brainstem nuclei (pseudorabies virus) was obtained. DiI-labeled nerve fibers occurred near uterine horn and uterine cervical blood vessels, in the myometrium, and in paracervical ganglia. Rats with vagal, pelvic, hypogastric and ovarian neurectomies exhibited a marked decrease in calcitonin gene-related peptide-immunoreactive nerves in the uterus relative to rats with pelvic, hypogastric, and ovarian neurectomies with intact vagus nerves. Neurons in the nodose ganglia and nucleus tractus solitarius were immunoreactive for estrogen receptors. These results demonstrated: (1) the vagus nerves serve as connections between the uterus and CNS, (2) the nodose ganglia contain uterine-related vagal afferent neuron cell bodies, and (3) neurons in vagal locales contain estrogen receptors.  相似文献   

6.
Summary Projections and peptide neurotransmitter/neuromodulator content of autonomic and visceral afferent neurons of the guinea pig were studied after application of the subunit B of cholera toxin (CTB) with or without horseradish peroxidase (HRP) as retrograde and anterograde tracers and subsequent immunohistochemical processing for double staining using antibodies raised to CTB, HRP and various neuropeptides. The results demonstrate that substance P (SP)- and calcitonin gene-related peptide (CGRP)-containing dorsal root ganglion cells project to the pylorus as well as to the celiac superior mesenteric and stellate ganglia as demonstrated with both retrograde and anterograde transport methodology. Binding studies revealed that a small number of the CTB-binding dorsal root ganglion cells contains immunoreactivity to SP and CGRP. The majority of the CTB-binding cells is SP- and CGRP-negative and terminate in the deeper parts of the dorsal horn. After injection of CTB conjugated to HRP (B-HRP) into the nodose ganglion, both motor and sensory elements were labeled in the medulla oblongata. Some of the CTB labeled vagal sensory nerve fibers in the nucleus tractus solitarii (NTS) were also found to contain immunoreactivity to SP or CGRP. The tracer was also transported through the peripheral branch of the nodose ganglion cells and labeled terminals in the esophagus.  相似文献   

7.
In the rat, somatostatin immunoreactivity was identified in neurons of the central nucleus of the amygdala that were retrogradely labeled by injection of fluorescent dyes into the nucleus tractus solitarius and dorsal motor nucleus of the vagus nerve. The double-labeled neurons are located in the medial subdivision of the central nucleus and appear to comprise less than one fifth of the descending pathway. These results suggest that somatostatin may act as a neurotransmitter in a pathway which mediates cardiovascular and other autonomic responses to fear-producing and other emotional stimuli.  相似文献   

8.
We tested the hypothesis that application of the subunit B of cholera toxin (CTB) to the airway mucosa would produce labeling of neuronal somata and sensory fibers in the medulla oblongata. Using (125)I-CTB as a tracer, we demonstrated first that CTB is transported across the tracheal epithelium, but once in the airway wall, it remains confined to the subepithelial space and lamina propria. Despite the rarity of intrinsic neurons in these areas, intraluminal CTB labeled approximately 10-60 neurons/rat in the nucleus ambiguus and a smaller number of neurons in the dorsal motor nucleus of the vagus. Well-defined sensory fiber terminals were also labeled in the commissural, medial, and ventrolateral subnuclei of the nucleus of the tractus solitarius. Approximately 50 and 90% of the neurons labeled by intraluminal CTB were also labeled by injections of FluoroGold into the tracheal adventitia and lung parenchyma, respectively. These findings demonstrate that a substantial number of medullary vagal motoneurons innervate targets in the vicinity of the airway epithelium. These neurons do not appear to be segregated anatomically from vagal motoneurons that project to deeper layers of the airway wall or lung parenchyma.  相似文献   

9.
Using multiple-site optical recording with the voltage-sensitive dye, NK2761, we found that vagus nerve stimulation in the embryonic chick brainstem elicits postsynaptic responses in an undefined region on the contralateral side. The characteristics of the contralateral optical signals suggested that they correspond to the monosynaptic response that is related to the vagal afferent fibers. The location of the contralateral response was different from the vagal motor nucleus (the dorsal motor nucleus of the vagus nerve) and sensory nucleus (the nucleus of the tractus solitarius), and other brainstem nuclei that receive primary vagal projection. These results show that the vagus nerve innervates and makes functional synaptic connections in a previously unreported region of the brainstem, and suggest that sensory information processing mediated by the vagus nerve is more complex than expected.  相似文献   

10.
Projections and peptide neurotransmitter/neuromodulator content of autonomic and visceral afferent neurons of the guinea pig were studied after application of the subunit B of cholera toxin (CTB) with or without horseradish peroxidase (HRP) as retrograde and anterograde tracers and subsequent immunohistochemical processing for double staining using antibodies raised to CTB, HRP and various neuropeptides. The results demonstrate that substance P (SP)- and calcitonin gene-related peptide (CGRP)-containing dorsal root ganglion cells project to the pylorus as well as to the celiac superior mesenteric and stellate ganglia as demonstrated with both retrograde and anterograde transport methodology. Binding studies revealed that a small number of the CTB-binding dorsal root ganglion cells contains immunoreactivity to SP and CGRP. The majority of the CTB-binding cells is SP- and CGRP-negative and terminate in the deeper parts of the dorsal horn. After injection of CTB conjugated to HRP (B-HRP) into the nodose ganglion, both motor and sensory elements were labeled in the medulla oblongata. Some of the CTB labeled vagal sensory nerve fibers in the nucleus tractus solitarii (NTS) were also found to contain immunoreactivity to SP or CGRP. The tracer was also transported through the peripheral branch of the nodose ganglion cells and labeled terminals in the esophagus.  相似文献   

11.
In ananesthetized cats, neurons of the nucleus of the tractus solitarius (NTS) and the dorsal motor nucleus of the vagus nerve (DMNV) revealed phasic excitatory responses to separate single vagal and cortical stimuli. Stimulation of the anterior limbic cortex combined with vagal stimulation resulted in inhibitory or excitatory modification of the vagal induced responses of the NTS and DMNV neurons. The data obtained suggest that complete inhibitory effects are related to general cortical mechanisms of control of the functional state of the brain stem visceral neurons. Selective inhibition of the vagal induced responses by limbic cortex stimulation is due to particular cortical mechanisms of the visceral sensory transmission control via the NTS neurons.  相似文献   

12.
The purpose of this study was to identify central neuronal sites activated by stimulation of cardiac ischemia-sensitive afferent neurons and determine whether electrical stimulation of left vagal afferent fibers modified the pattern of neuronal activation. Fos-like immunoreactivity (Fos-LI) was used as an index of neuronal activation in selected levels of cervical and thoracic spinal cord and brain stem. Adult Sprague-Dawley rats were anesthetized with urethane and underwent intrapericardial infusion of an "inflammatory exudate solution" (IES) containing algogenic substances that are released during ischemia (10 mM adenosine, bradykinin, prostaglandin E2, and 5-hydroxytryptamine) or occlusion of the left anterior descending coronary artery (CoAO) to activate cardiac ischemia-sensitive (nociceptive) afferent fibers. IES and CoAO increased Fos-LI above resting levels in dorsal horns in laminae I-V at C2 and T4 and in the caudal nucleus tractus solitarius. Dorsal rhizotomy virtually eliminated Fos-LI in the spinal cord as well as the brain stem. Neuromodulation of the ischemic signal by electrical stimulation of the central end of the left thoracic vagus excited neurons at the cervical and brain stem level but inhibited neurons at the thoracic spinal cord during IES or CoAO. These results suggest that stimulation of the left thoracic vagus excites descending inhibitory pathways. Inhibition at the thoracic spinal level that suppresses the ischemic (nociceptive) input signal may occur by a short-loop descending pathway via signals from cervical propriospinal circuits and/or a longer-loop descending pathway via signals from the nucleus tractus solitarius.  相似文献   

13.
Substance P binding sites in the nucleus tractus solitarius were visualized with receptor autoradiography using Bolton-Hunter [125I]substance P. Substance P binding sites were found to have distinct patterns within the cat nucleus tractus solitarius. The majority of substance P binding sites were present in the medial, intermediate and the peripheral rim of the parvocellular subdivisions. Lower amounts of substance P binding sites were present in the commissural, ventrolateral, interstitial and dorsolateral subdivisions. No substance P binding sites were present in the central region of the parvocellular subdivision or the solitary tract. The localization of substance P binding sites in the nucleus tractus solitarius is very similar to the patterns of substance P immunoreactive fibers previously described for this region. Results of this study add further support for a functional role of substance P in synaptic circuits of the nucleus tractus solitarius.  相似文献   

14.
Neural mechanisms of emesis   总被引:1,自引:0,他引:1  
Emesis is a reflex, developed to different degrees in different species, that allows an animal to rid itself of ingested toxins or poisons. The reflex can be elicited either by direct neuronal connections from visceral afferent fibers, especially those from the gastrointestinal tract, or from humoral factors. Emesis from humoral factors depends on the integrity of the area postrema; neurons in the area postrema have excitatory receptors for emetic agents. Emesis from gastrointestinal afferents does not depend on the area postrema, but probably the reflex is triggered by projections to some part of the nucleus tractus solitarius. As with a variety of other complex motor functions regulated by the brain stem, it is likely that the sequence of muscle excitation and inhibition is controlled by a central pattern generator located in the nucleus tractus solitarius, and that information from humoral factors via the area postrema and visceral afferents via the vagus nerve converge at this point. This central pattern generator, like those for motor functions such as swallowing, presumably projects to the various motor nuclei, perhaps through interneuronal pathways, to elicit the sequential excitation and inhibition that controls the reflex.  相似文献   

15.
Intrabulbar connections of respiratory nuclei and the medullary reticular formation and also descending pathways from these structures in the spinal cord were studied by the retrograde horseradish peroxidase axonal transport method in cats. Neurons of the nucleus ambiguus and nucleus retroambigualis (ventral respiratory group) and of the ventrolateral part of the nucleus of the tractus solitarius (dorsal respiratory group) were shown to form direct two-way connections with each other and with the medial region of the medulla. Neurons of the pneumotaxic center send uncrossed axons to the nucleus ambiguus and to the medial medullary reticular formation. Neurons of the contralateral homonymous nucleus and neurons of the nucleus of the tractus solitarius are sources of projections of the locus coeruleus. A well developed system of direct connections was found between neurons of respiratory nuclei of the two halves of the brain. The possible role of these nuclear formations in genesis of the respiratory rhythm and regulation of the respiratory and other motor functions of the reticular formation is discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 14, No. 2, pp. 149–157, March–April, 1982.  相似文献   

16.
L J Sim  S A Joseph 《Peptides》1989,10(5):1019-1025
Afferent projections to the nucleus raphe magnus (NRM) and dorsal raphe nucleus (DRN) were identified using retrograde transport of horseradish peroxidase conjugated wheat germ agglutinin (HRP-WGA). Neurons were labeled in important nociceptive regions including periaqueductal gray (PAG), arcuate nucleus, lateral hypothalamus and medial thalamic nuclei following both injections. We have immunocytochemically identified opiocortin/WGA neurons in the arcuate nucleus following NRM and DRN injections. Dual stained catecholamine/WGA perikarya were found in zona incerta, locus coeruleus, substantia nigra, nucleus tractus solitarius and adjacent A2, C2 and C3, lateral paragigantocellular reticular nucleus/C1 and lateral reticular nucleus/A1 following DRN injections and in zona incerta, substantia nigra, nucleus tractus solitarius/A2 and lateral reticular nucleus/A1 after NRM injections. These results provide further evidence for opiocortin and catecholamine modulation of analgesia.  相似文献   

17.
The adiposity hormone leptin has been shown to decrease food intake and body weight by acting on neuropeptide circuits in the hypothalamus. However, it is not clear how this primary hypothalamic action of leptin is translated into a change in food intake. We hypothesize that the behavioral effect of leptin ultimately involves the integration of neuronal responses in the forebrain with those in the nucleus tractus solitarius in the caudal brainstem, where ingestive behavior signals are received from the gastrointestinal system and the blood. One example is the peptide cholecystokinin, which is released from the gut following ingestion of a meal and acts via vagal afferent nerve fibers to activate medial nucleus tractus solitarius neurons and thereby decrease meal size. While it is established that leptin acts in the arcuate nucleus in the hypothalamus to stimulate anorexigenic neurons that inhibit food intake while simulataneously inhibiting orexigenic neurons that increase food intake, the mechanisms linking these effects with regions of the caudal brainstem that integrate cues related to meal termination are unclear. Based on an increasing body of supportive data, we hypothesize that this integration involves a pathway comprising descending projections from neurons from the paraventricular nucleus to neurons within the nucleus tractus solitarius that are activated by meal-related satiety factors. Leptin's anorexic effect comprises primarily decreased meal size, and at subthreshold doses for eliciting an effect on food intake, leptin intensifies the satiety response to circulating cholecystokinin. The location of neurons subserving the effects of intracerebroventricular administration of leptin and intraperitoneal injection of cholecystokinin on food intake has been identified by analysis of Fos expression. These studies reveal a distribution that includes the paraventricular nucleus and regions within the caudal brainstem, with the medial nucleus tractus solitarius having the most pronounced Fos expression in response to leptin and cholecystokinin, and support the hypothesis that the long-term adiposity signal leptin and the short-term satiety signal cholecystokinin act in concert to maintain body weight homeostasis.  相似文献   

18.
Nitric oxide synthase-immunoreactive (NOS-IR) neurons in the rat caudal dorsal motor nucleus of the vagus (DMV) project selectively to the gastric fundus and may be involved in vagal reflexes controlling gastric distension. This study aimed to identify the gastric projections of tyrosine hydroxylase-immunoreactive (TH-IR) DMV neurons, whether such neurons colocalize NOS-IR, and if they are activated after esophageal distension. Gastric-projecting neurons were identified after injection of retrograde tracers into the muscle wall of the gastric fundus, corpus, or antrum/pylorus before removal and processing of the brain stems for TH- and NOS-IR. A significantly higher proportion of corpus- compared with fundus- and antrum/pylorus-projecting neurons were TH-IR (14% compared with 4% and 2%, respectively, P < 0.05). Colocalization of NOS- and TH-IR was never observed in gastric-projecting neurons. In rats tested for c-Fos activation after intermittent esophageal balloon distension, no colocalization with TH-IR was observed in DMV neurons. These findings suggest that TH-IR neurons in the caudal DMV project mainly to the gastric corpus, constitute a subpopulation distinct from that of nitrergic vagal neurons, and are not activated on esophageal distension.  相似文献   

19.
With the use of an antiserum generated in rabbits against synthetic human calcitonin gene-related peptide (CGRP) the distribution of CGRP-like immunoreactive cell bodies and nerve fibers was studied in the rat central nervous system. A detailed stereotaxic atlas of CGRP-like neurons was prepared. CGRP-like immunoreactivity was widely distributed in the rat central nervous system. CGRP positive cell bodies were observed in the preoptic area and hypothalamus (medial preoptic, periventricular, anterior hypothalamic nuclei, perifornical area, medial forebrain bundle), premamillary nucleus, amygdala medialis, hippocampus and dentate gyrus, central gray and the ventromedial nucleus of the thalamus. In the midbrain a large cluster of cells was contained in the peripeduncular area ventral to the medial geniculate body. In the hindbrain cholinergic motor nuclei (III, IV, V, VI, VII XII) contained CGRP-immunoreactivity. Cell bodies were also observed in the ventral tegmental nucleus, the parabrachial nuclei, superior olive and nucleus ambiguus. The ventral horn cells of the spinal cord, the trigeminal and dorsal root ganglia also contained CGRP-immunoreactivity. Dense accumulations of fibers were observed in the amydala centralis, caudal portion of the caudate putamen, sensory trigeminal area, substantia gelatinosa, dorsal horn of the spinal cord (laminae I and II). Other areas containing CGRP-immunoreactive fibers are the septal area, nucleus of the stria terminalis, preoptic and hypothalamic nuclei (e.g., medial preoptic, periventricular, dorsomedial, median eminence), medial forebrain bundle, central gray, medial geniculate body, peripeduncular area, interpeduncular nucleus, cochlear nucleus, parabrachial nuclei, superior olive, nucleus tractus solitarii, and in the confines of clusters of cell bodies. Some fibers were also noted in the anterior and posterior pituitary and the sensory ganglia. As with other newly described brain neuropeptides it can only be conjectured that CGRP has a neuroregulatory action on a variety of functions throughout the brain and spinal cord.  相似文献   

20.
Lorke DE  Kwong WH  Chan WY  Yew DT 《Life sciences》2003,73(10):1315-1331
Distribution and maturation of catecholaminergic (CA) neurons have been studied by tyrosine hydroxylase immunohistochemistry in the medulla oblongata of human fetuses aged 14.5-25 weeks of gestation. Already at 14.5 weeks, CA neurons were observed in two longitudinally oriented cell clusters, one located ventrolaterally in the area of the lateral reticular and ambiguous nuclei, the other one dorsomedially forming 4 groups related to the dorsal vagal nucleus, the commissural nucleus of the vagus, the nucleus of the tractus solitarius and the area postrema. CA neurons in the area postrema were often found close to blood vessels. Scattered intermediate CA neurons were seen between these two larger clusters. CA neurons still appeared immature exhibiting bipolar morphology with only one or two short stout processes, which hardly branched. At 21 weeks, CA neurons occupied essentially the same location, but had a more mature morphology. Though still bipolar in shape, they had thinner and much longer processes which frequently branched. Both in the ventrolateral and the dorsomedial cell clusters, these processes were frequently lying close to blood vessels. At 25 weeks, CA cells had matured into multipolar neurons with long thin processes forming fine fiber networks in the ventrolateral medulla as well as around and within the dorsal vagal and solitarius nuclei. Only at this stage, a distinct CA fiber tract was seen located in the region of the tractus solitarius. Our results indicate that CA neurons in the human medulla, which are presumably involved in the control of ventilation and blood pressure, though generated rather early during development, mature relatively late.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号