首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 0 毫秒
1.
To minimize the cytotoxicity of shikonin and alkannin that arises through the generation of reactive oxygen species (ROS) and alkylation of the naphthazarin ring, two series of novel core‐scaffold‐modified shikonin and alkannin derivatives were designed. These derivatives, which differ in their configurational and positional isomerism (R‐, S‐, and 2‐ and 6‐isomers) were synthesized in high enantiomeric excess (>99 % ee). The selectivity of the dimethylated derivatives was significantly higher than the parent shikonin in vitro, but some side effects were still observed in vivo. Surprisingly, the dimethylated diacetyl derivatives with poor anticancer activity in vitro showed tumor‐inhibiting effects similar to paclitaxel without any toxicity in vivo. The anticancer activity of these derivatives is in agreement with their low ROS generation and alkylating capacity, emphasizing their potential as prodrugs. This strategy provides means to address the nonspecific cytotoxicity of naphthazarin analogues toward normal cells.  相似文献   

2.
MiR-302b is a member of miR-302-367 cluster. The miR-302-367 cluster played important roles in maintaining pluripotency in human embryonic stem cells (hESCs) and has been proved to be capable of suppressing cell growth in several types of cancer cell lines including Hepatocellular Carcinoma (HCC) Cell lines. However, the role that miR-302b plays in the 5-Fluorouracil (5-FU) sensitivity of HCC has not been known. This study showed that miR-302b could enhance the sensitivity to 5-FU in HCC cell lines and verified its two putative targeted genes responsible for its 5-FU sensitivity.  相似文献   

3.
Cancer is one of the most important health problems of our population, and one of the common anticancer treatments is chemotherapy. The disadvantages of chemotherapy are related to the drug’s toxic effects, which act on cancer cells and the healthy part of the body. The solution of the problem is drug encapsulation and drug targeting. The present study aimed to develop a novel method of preparing multifunctional 5-Fluorouracil (5-FU) nanocarriers and their in vitro characterization. 5-FU polyaminoacid-based core@shell nanocarriers were formed by encapsulation drug-loaded nanocores with polyaminoacids multilayer shell via layer-by-layer method. The size of prepared nanocarriers ranged between 80–200 nm. Biocompatibility of our nanocarriers as well as activity of the encapsulated drug were confirmed by MTT tests. Moreover, the ability to the real-time observation of developed nanocarriers and drug accumulation inside the target was confirmed by fluorine magnetic resonance imaging (19F-MRI).  相似文献   

4.
Zotarolimus is a semi-synthetic derivative of rapamycin and a novel immunosuppressive agent used to prevent graft rejection. The pharmacological pathway of zotarolimus restricts the kinase activity of the mammalian target of rapamycin (mTOR), which potentially leads to reductions in cell division, cell growth, cell proliferation, and inflammation. These pathways have a critical influence on tumorigenesis. This study aims to examine the anti-tumor effect of zotarolimus or zotarolimus combined with 5-fluorouracil (5-FU) on A549 human lung adenocarcinoma cell line implanted in BALB/c nude mice by estimating tumor growth, apoptosis expression, inflammation, and metastasis. We established A549 xenografts in nude mice, following which we randomly divided the mice into four groups: control, 5-FU (100 mg/kg/week), zotarolimus (2 mg/kg/day), and zotarolimus combined with 5-FU. Compared the results with those for control mice, we found that mice treated with zotarolimus or zotarolimus combined with 5-FU retarded tumor growth; increased tumor apoptosis through the enhanced expression of cleaved caspase 3 and extracellular signal-regulated kinase (ERK) phosphorylation; decreased inflammation cytokines levels (e.g., IL-1β, TNF-α, and IL-6); reduced inflammation-related factors such as cyclooxygenase-2 (COX-2) protein and nuclear factor-κB (NF-κB) mRNA; enhanced anti-inflammation-related factors including IL-10 and inhibitor of NF-κB kinase α (IκBα) mRNA; and inhibited metastasis-related factors such as transforming growth factor β (TGF-β), CD44, epidermal growth factor receptor (EGFR), and vascular endothelial growth factor (VEGF). Notably, mice treated with zotarolimus combined with 5-FU had significantly retarded tumor growth, reduced tumor size, and increased tumor inhibition compared with the groups of mice treated with 5-FU or zotarolimus alone. The in vivo study confirmed that zotarolimus or zotarolimus combined with 5-FU could retard lung adenocarcinoma growth and inhibit tumorigenesis. Zotarolimus and 5-FU were found to have an obvious synergistic tumor-inhibiting effect on lung adenocarcinoma. Therefore, both zotarolimus alone and zotarolimus combined with 5-FU may be potential anti-tumor agents for treatment of human lung adenocarcinoma.  相似文献   

5.
Colorectal cancer (CRC) is the second deadliest cancer worldwide despite significant advances in both diagnosis and therapy. The high incidence of CRC and its poor prognosis, partially attributed to multi-drug resistance and antiapoptotic activity of cancer cells, arouse strong interest in the identification and development of new treatments. S-Adenosylmethionine (AdoMet), a natural compound and a nutritional supplement, is well known for its antiproliferative and proapoptotic effects as well as for its potential in overcoming drug resistance in many kinds of human tumors. Here, we report that AdoMet enhanced the antitumor activity of 5-Fluorouracil (5-FU) in HCT 116p53+/+ and in LoVo CRC cells through the inhibition of autophagy, induced by 5-FU as a cell defense mechanism to escape the drug cytotoxicity. Multiple drug resistance is mainly due to the overexpression of drug efflux pumps, such as P-glycoprotein (P-gp). We demonstrate here that AdoMet was able to revert the 5-FU-induced upregulation of P-gp expression and to decrease levels of acetylated NF-κB, the activated form of NF-κB, the major antiapoptotic factor involved in P-gp-related chemoresistance. Overall, our data show that AdoMet, was able to overcome 5-FU chemoresistance in CRC cells by targeting multiple pathways such as autophagy, P-gp expression, and NF-κB signaling activation and provided important implications for the development of new adjuvant therapies to improve CRC treatment and patient outcomes.  相似文献   

6.
Malignant gliomas, including glioblastomas, are extremely difficult to treat. The median survival for glioblastoma patients with optimal therapeutic intervention is 15 months. We developed a novel MAO‐B‐selectively activated prodrug, N,N‐bis(2‐chloroethyl)‐2‐(1‐methyl‐1,2,3,6‐tetrahydropyridin‐4‐yl)propanamide (MP‐MUS), for the treatment of gliomas based on 1‐methyl‐4‐phenyl‐1,2,3,6‐tetrahydropyridine (MPTP). The design of neutral MP‐MUS involved the use of a seeker molecule capable of binding to mitochondrial MAO‐B, which is up‐regulated ≥fourfold in glioma cells. Once the binding occurs, MP‐MUS is converted into a positively charged moiety, P+‐MUS, which accumulates inside mitochondria at a theoretical maximal value of 1000:1 gradient. The LD50 of MP‐MUS against glioma cells is 75 μM , which is two‐ to threefold more potent than temozolomide, a primary drug for gliomas. Importantly, MP‐MUS was found to be selectively toxic toward glioma cells. In the concentration range of 150–180 μM MP‐MUS killed 90–95 % of glioma cells, but stimulated the growth of normal human astrocytes. Moreover, maturation of MP‐MUS is highly dependent on MAO‐B, and inhibition of MAO‐B activity with selegiline protected human glioma cells from apoptosis.  相似文献   

7.
We investigate dissociative electron attachment to 5-fluorouracil (5-FU) employing a crossed electron-molecular beam experiment and quantum chemical calculations. Upon the formation of the 5-FU anion, 12 different fragmentation products are observed, the most probable dissociation channel being H loss. The parent anion, 5-FU, is not stable on the experimental timescale (~140 µs), most probably due to the low electron affinity of FU; simple HF loss and F formation are seen only with a rather weak abundance. The initial dynamics upon electron attachment seems to be governed by hydrogen atom pre-dissociation followed by either its full dissociation or roaming in the vicinity of the molecule, recombining eventually into the HF molecule. When the HF molecule is formed, the released energy might be used for various ring cleavage reactions. Our results show that higher yields of the fluorine anion are most probably prevented through both faster dissociation of an H atom and recombination of F with a proton to form HF. Resonance calculations indicate that F is formed upon shape as well as core-excited resonances.  相似文献   

8.
9.
Gut microorganisms metabolize azobenzene compounds (Ph1−N=N−Ph2) into free aniline products (Ph1−NH2+H2N−Ph2), a process that has been largely investigated to reduce dyes residues in the textile industry. However, the action of bacterial core enzymes such as azoreductases (AzoR) might also help to deliver prodrugs that become active when they reach the colonic region, a mechanism with potential applications for the treatment of inflammatory bowel disease (IBD) and colorectal cancer. So far, three azo-bonded prodrugs of 5-aminosalicylic acid (5-ASA), for example, sulfasalazine, olsalazine and balsalazide, have been used for colon-targeted delivery. The present contribution describes the first rational design of a novel azobenzene prodrug thanks to a computational approach, with a focus on linking 5-ASA to another approved anti-inflammatory drug. The resulting prodrugs were assessed for their degradation upon AzoR action. Replacing the original carriers by irsogladine is found to improve action.  相似文献   

10.
In an attempt to discover a new generation of triazole antifungal agents, a series of triazole–thiazolidinedione hybrids were designed and synthesized by molecular hybridization of the antifungal agent fluconazole and rosiglitazone (an antidiabetic). Most of the target compounds showed good to excellent inhibitory activity against a variety of clinically important fungal pathogens. In particular, compounds (Z)‐5‐(2,4‐dichlorobenzylidene)‐3‐(2‐(2,4‐difluorophenyl)‐2‐hydroxy‐3‐(1H‐1,2,4‐triazol‐1‐yl)propyl)thiazolidine‐2,4‐dione) ( 15 c ), (Z)‐3‐(2‐(2,4‐difluorophenyl)‐2‐hydroxy‐3‐(1H‐1,2,4‐triazol‐1‐yl)propyl)‐5‐(furan‐3‐ylmethylene)thiazolidine‐2,4‐dione ( 15 j ), and (Z)‐3‐(2‐(2,4‐difluorophenyl)‐2‐hydroxy‐3‐(1H‐1,2,4‐triazol‐1‐yl)propyl)‐5‐(furan‐3‐ylmethylene)thiazolidine‐2,4‐dione ( 15 r ) were highly active against Candida albicans, with MIC80 values in the range of 0.03–0.15 μM . Moreover, compounds 15 j and 15 r were found to be effective against four fluconazole‐resistant clinical isolates; these two compounds are particularly promising antifungal leads for further optimization. Molecular docking studies revealed that the hydrogen bonding interactions between thiazolidinedione and CYP51 from C. albicans are important for antifungal activity. This study also demonstrates the effectiveness of molecular hybridization in antifungal drug discovery.  相似文献   

11.
Enzyme engineering has made impressive progress in the past decades, paving the way for the widespread use of enzymes for various purposes. In contrast to “classical” enzyme engineering, which focuses on optimizing specific properties of natural enzymes, a more recent trend towards the creation of artificial enzymes that catalyze fundamentally distinct, new-to-nature reactions is observable. While approaches for creating such enzymes differ significantly, they share the common goal of enabling biocatalytic novelty to broaden the range of applications for enzymes. Although most artificial enzymes reported to date are only moderately active and barely function in vivo, they have the potential to endow cells with capabilities that were previously out of reach and thus herald a new wave of “functional xenobiology”. Herein, we highlight recent developments in the field of artificial enzymes with a particular focus on challenges and opportunities for their use in xenobiology.  相似文献   

12.
Two series of 5′‐triphenylmethyl (trityl)‐substituted thymidine derivatives were synthesized and tested against Leishmania infantum axenic promastigotes and amastigotes. Several of these compounds show significant antileishmanial activity, with IC50 values in the low micromolar range. Among these, 3′‐O‐(isoleucylisoleucyl)‐5′‐O‐(3,3,3‐triphenylpropanoyl)thymidine displays particularly good activity against intracellular amastigotes. Assays performed to characterize the nature of parasite cell death in the presence of the tritylthymidines indicated significant alterations in mitochondrial transmembrane potential, an increase in superoxide concentrations, and also significant decreases in DNA degradation during the cell death process. Results point to the mitochondrial nuclease LiEndoG as a target for the action of this family of compounds.  相似文献   

13.
Methyl-substituted analogs of (Z)-5-decenyl acetate, a pheromone component of the turnip moth,Agrotis segetum, have been synthesized and studied by electrophysiological single-sensillum recordings and molecular mechanics calculations [MM2(85)]. The analogs are monomethyl substituted in the 2, 3, 4, and 5 positions and geminally dimethyl substituted in the 2, 3, and 4 positions. The methyl groups have been employed as space probes to study the degree of steric complementarity between the acetate-substituted alkyl chain of the pheromone component and its receptor. The electrophysiological activities, interpreted in terms of a receptor interaction model, indicate significant steric repulsive interactions between the introduced methyl groups and the receptor. This implies a high degree of complementarity between the acetate-substituted alkyl chain of the natural pheromone component and its receptor.Schiff., Lepidoptera: Noctuidae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号