首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Probabilistic sensitivities provide an important insight in reliability analysis and often crucial towards understanding the physical behaviour underlying failure and modifying the design to mitigate and manage risk. This article presents a new computational approach for calculating stochastic sensitivities of mechanical systems with respect to distribution parameters of random variables. The method involves high dimensional model representation and score functions associated with probability distribution of a random input. The proposed approach facilitates first-and second-order approximation of stochastic sensitivity measures and statistical simulation. The formulation is general such that any simulation method can be used for the computation such as Monte Carlo, importance sampling, Latin hypercube, etc. Both the probabilistic response and its sensitivities can be estimated from a single probabilistic analysis, without requiring gradients of performance function. Numerical results indicate that the proposed method provides accurate and computationally efficient estimates of sensitivities of statistical moments or reliability of structural system.  相似文献   

2.
This article presents a new class of computational methods, known as dimensional decomposition methods, for calculating stochastic sensitivities of mechanical systems with respect to probability distribution parameters. These methods involve a hierarchical decomposition of a multivariate response function in terms of variables with increasing dimensions and score functions associated with probability distribution of a random input. The proposed decomposition facilitates univariate and bivariate approximations of stochastic sensitivity measures, lower-dimensional numerical integrations or Lagrange interpolations, and Monte Carlo simulation. Both the probabilistic response and its sensitivities can be estimated from a single stochastic analysis, without requiring performance function gradients. Numerical results indicate that the decomposition methods developed provide accurate and computationally efficient estimates of sensitivities of statistical moments or reliability, including stochastic design of mechanical systems. Future effort includes extending these decomposition methods to account for the performance function parameters in sensitivity analysis.  相似文献   

3.
In this paper, a new computational framework based on the topology derivative concept is presented for evaluating stochastic topological sensitivities of complex systems. The proposed framework, designed for dealing with high dimensional random inputs, dovetails a polynomial dimensional decomposition (PDD) of multivariate stochastic response functions and deterministic topology derivatives. On one hand, it provides analytical expressions to calculate topology sensitivities of the first three stochastic moments which are often required in robust topology optimization (RTO). On another hand, it offers embedded Monte Carlo Simulation (MCS) and finite difference formulations to estimate topology sensitivities of failure probability for reliability-based topology optimization (RBTO). For both cases, the quantification of uncertainties and their topology sensitivities are determined concurrently from a single stochastic analysis. Moreover, an original example of two random variables is developed for the first time to obtain analytical solutions for topology sensitivity of moments and failure probability. Another 53-dimension example is constructed for analytical solutions of topology sensitivity of moments and semi-analytical solutions of topology sensitivity of failure probabilities in order to verify the accuracy and efficiency of the proposed method for high-dimensional scenarios. Those examples are new and make it possible for researchers to benchmark stochastic topology sensitivities of existing or new algorithms. In addition, it is unveiled that under certain conditions the proposed method achieves better accuracies for stochastic topology sensitivities than for the stochastic quantities themselves.  相似文献   

4.
The central theme of this paper is multiplicative polynomial dimensional decomposition (PDD) methods for solving high‐dimensional stochastic problems. When a stochastic response is dominantly of multiplicative nature, the standard PDD approximation, predicated on additive function decomposition, may not provide sufficiently accurate probabilistic solutions of a complex system. To circumvent this problem, two multiplicative versions of PDD, referred to as factorized PDD and logarithmic PDD, were developed. Both versions involve a hierarchical, multiplicative decomposition of a multivariate function, a broad range of orthonormal polynomial bases for Fourier‐polynomial expansions of component functions, and a dimension‐reduction or sampling technique for estimating the expansion coefficients. Three numerical problems involving mathematical functions or uncertain dynamic systems were solved to corroborate how and when a multiplicative PDD is more efficient or accurate than the additive PDD. The results show that indeed, both the factorized and logarithmic PDD approximations can effectively exploit the hidden multiplicative structure of a stochastic response when it exists. Since a multiplicative PDD recycles the same component functions of the additive PDD, no additional cost is incurred. Finally, the random eigensolutions of a sport utility vehicle comprising 40 random variables were evaluated, demonstrating the ability of the new methods to solve industrial‐scale problems. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
This paper presents a polynomial dimensional decomposition (PDD) method for global sensitivity analysis of stochastic systems subject to independent random input following arbitrary probability distributions. The method involves Fourier-polynomial expansions of lower-variate component functions of a stochastic response by measure-consistent orthonormal polynomial bases, analytical formulae for calculating the global sensitivity indices in terms of the expansion coefficients, and dimension-reduction integration for estimating the expansion coefficients. Due to identical dimensional structures of PDD and analysis-of-variance decomposition, the proposed method facilitates simple and direct calculation of the global sensitivity indices. Numerical results of the global sensitivity indices computed for smooth systems reveal significantly higher convergence rates of the PDD approximation than those from existing methods, including polynomial chaos expansion, random balance design, state-dependent parameter, improved Sobol's method, and sampling-based methods. However, for non-smooth functions, the convergence properties of the PDD solution deteriorate to a great extent, warranting further improvements. The computational complexity of the PDD method is polynomial, as opposed to exponential, thereby alleviating the curse of dimensionality to some extent.  相似文献   

6.
This paper presents a novel hybrid polynomial dimensional decomposition (PDD) method for stochastic computing in high-dimensional complex systems. When a stochastic response does not possess a strongly additive or a strongly multiplicative structure alone, then the existing additive and multiplicative PDD methods may not provide a sufficiently accurate probabilistic solution of such a system. To circumvent this problem, a new hybrid PDD method was developed that is based on a linear combination of an additive and a multiplicative PDD approximation, a broad range of orthonormal polynomial bases for Fourier-polynomial expansions of component functions, and a dimension-reduction or sampling technique for estimating the expansion coefficients. Two numerical problems involving mathematical functions or uncertain dynamic systems were solved to study how and when a hybrid PDD is more accurate and efficient than the additive or the multiplicative PDD. The results show that the univariate hybrid PDD method is slightly more expensive than the univariate additive or multiplicative PDD approximations, but it yields significantly more accurate stochastic solutions than the latter two methods. Therefore, the univariate truncation of the hybrid PDD is ideally suited to solving stochastic problems that may otherwise mandate expensive bivariate or higher-variate additive or multiplicative PDD approximations. Finally, a coupled acoustic-structural analysis of a pickup truck subjected to 46 random variables was performed, demonstrating the ability of the new method to solve large-scale engineering problems.  相似文献   

7.
A new, generalized, multivariate dimension‐reduction method is presented for calculating statistical moments of the response of mechanical systems subject to uncertainties in loads, material properties, and geometry. The method involves an additive decomposition of an N‐dimensional response function into at most S‐dimensional functions, where S?N; an approximation of response moments by moments of input random variables; and a moment‐based quadrature rule for numerical integration. A new theorem is presented, which provides a convenient means to represent the Taylor series up to a specific dimension without involving any partial derivatives. A complete proof of the theorem is given using two lemmas, also proved in this paper. The proposed method requires neither the calculation of partial derivatives of response, as in commonly used Taylor expansion/perturbation methods, nor the inversion of random matrices, as in the Neumann expansion method. Eight numerical examples involving elementary mathematical functions and solid‐mechanics problems illustrate the proposed method. Results indicate that the multivariate dimension‐reduction method generates convergent solutions and provides more accurate estimates of statistical moments or multidimensional integration than existing methods, such as first‐ and second‐order Taylor expansion methods, statistically equivalent solutions, quasi‐Monte Carlo simulation, and the fully symmetric interpolatory rule. While the accuracy of the dimension‐reduction method is comparable to that of the fourth‐order Neumann expansion method, a comparison of CPU time suggests that the former is computationally far more efficient than the latter. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

8.
This article presents a new polynomial dimensional decomposition method for solving stochastic problems commonly encountered in engineering disciplines and applied sciences. The method involves a hierarchical decomposition of a multivariate response function in terms of variables with increasing dimensions, a broad range of orthonormal polynomial bases consistent with the probability measure for Fourier‐polynomial expansion of component functions, and an innovative dimension‐reduction integration for calculating the coefficients of the expansion. The new decomposition method does not require sample points as in the previous version; yet, it generates a convergent sequence of lower‐variate estimates of the probabilistic characteristics of a generic stochastic response. The results of five numerical examples indicate that the proposed decomposition method provides accurate, convergent, and computationally efficient estimates of the tail probability of random mathematical functions or the reliability of mechanical systems. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
A new moment-modified polynomial dimensional decomposition (PDD) method is presented for stochastic multiscale fracture analysis of three-dimensional, particle-matrix, functionally graded materials (FGMs) subject to arbitrary boundary conditions. The method involves Fourier-polynomial expansions of component functions by orthonormal polynomial bases, an additive control variate in conjunction with Monte Carlo simulation for calculating the expansion coefficients, and a moment-modified random output to account for the effects of particle locations and geometry. A numerical verification conducted on a two-dimensional FGM reveals that the new method, notably the univariate PDD method, produces the same crude Monte Carlo results with a five-fold reduction in the computational effort. The numerical results from a three-dimensional, edge-cracked, FGM specimen under a mixed-mode deformation demonstrate that the statistical moments or probability distributions of crack-driving forces and the conditional probability of fracture initiation can be efficiently generated by the univariate PDD method. There exist significant variations in the probabilistic characteristics of the stress-intensity factors and fracture-initiation probability along the crack front. Furthermore, the results are insensitive to the subdomain size from concurrent multiscale analysis, which, if selected judiciously, leads to computationally efficient estimates of the probabilistic solutions.  相似文献   

10.
A dimensional decomposition method is presented for calculating the probabilistic characteristics of complex‐valued eigenvalues and eigenvectors of linear, stochastic, dynamic systems. The method involves a function decomposition allowing lower‐dimensional approximations of eigensolutions, Lagrange interpolation of lower‐dimensional component functions, and Monte Carlo simulation. Compared with the commonly used perturbation method, neither the assumption of small input variability nor the calculation of the derivatives of eigensolutions is required by the method developed. Results of numerical examples from linear stochastic dynamics indicate that the decomposition method provides excellent estimates of the moments and/or probability densities of eigenvalues and eigenvectors for various cases including large statistical variations of input. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

11.
Nonlinear fluid viscous dampers have been widely used in energy-dissipating structures due to their stable and high dissipation capacity and low maintenance cost. However, the literature on stochastic optimization of nonlinear viscous dampers under nonstationary excitations is limited. This paper is devoted to the stochastic response and sensitivity analysis of large-scale energy-dissipating structures equipped with nonlinear viscous dampers subjected to nonstationary seismic excitations. The analysis procedure is developed in the frame of the equivalent linearization method (ELM) in conjunction with the explicit time-domain method (ETDM). The equivalent linear system and the corresponding statistical moments of responses at a specific time instant are first obtained through a series of stochastic response analyses of the linearized systems. Then the sensitivities of the statistical moments of responses are determined via a series of stochastic sensitivity analyses of the equivalent linear system at the corresponding time instant. The above two iterative procedures are facilitated at high efficiency using ETDM with explicit formulations of the statistical moments of responses and the sensitivities of the statistical moments. This process is repeated for different time instants, and the time histories of the statistical moments and their sensitivities can be obtained. The stochastic response and sensitivity results are further utilized to conduct the stochastic optimal parametric design of the nonlinear viscous dampers. A one-storey building model equipped with a nonlinear viscous damper is analyzed to demonstrate the accuracy of the proposed method, and a suspension bridge with a main span of 1200 m equipped with 4 nonlinear viscous dampers is further investigated to illustrate the feasibility of the proposed method for stochastic optimal design of large-scale structures.  相似文献   

12.
点估计法对于仅包含连续随机变量的函数和系统的随机分析具有原理简洁清晰、操作简单易行的优点,并可以直接给出除均值和标准差之外的其他低阶统计矩。然而,对于客观存在的或者是需处理为的涉及离散随机变量的系统,现有的点估计法无能为力。为解决这一问题,该文基于一般随机系统的形式解析解,导出了涉及离散变量函数和系统的统计矩估计的理论表达式;然后,将其与现有的点估计法相结合,给出了涉及离散变量的函数和系统的低阶矩估计的点估计法;最后,通过理论推导和算例分析两种方式验证了建议方法的合理性和有效性,且指出该方法对包含离散变量的一般工程随机系统分析的适用性。  相似文献   

13.
Reliability–sensitivity, which is considered as an essential component in engineering design under uncertainty, is often of critical importance toward understanding the physical systems underlying failure and modifying the design to mitigate and manage risk. This paper presents a new computational tool for predicting reliability (failure probability) and reliability–sensitivity of mechanical or structural systems subject to random uncertainties in loads, material properties, and geometry. The dimension reduction method is applied to compute response moments and their sensitivities with respect to the distribution parameters (e.g., shape and scale parameters, mean, and standard deviation) of basic random variables. Saddlepoint approximations with truncated cumulant generating functions are employed to estimate failure probability, probability density functions, and cumulative distribution functions. The rigorous analytic derivation of the parameter sensitivities of the failure probability with respect to the distribution parameters of basic random variables is derived. Results of six numerical examples involving hypothetical mathematical functions and solid mechanics problems indicate that the proposed approach provides accurate, convergent, and computationally efficient estimates of the failure probability and reliability–sensitivity. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
15.
Gear systems are widely used in various mechanical transmission systems. This paper aims to develop an effective and practical method for dynamic reliability analysis of gear transmission system. The proposed method can comprehensively evaluate the dynamic reliability of gear transmission system by adopting the fourth-moment SPA method. First, a nonlinear dynamics model of a single-stage spur gear transmission system is established, which simultaneously takes into account the nonlinear backlash, time-varying meshing stiffness, and static transmission error. After that, a dynamic reliability model for the tooth surface contact fatigue failure of gear system is established with the uncertainty of the motion, structure, and material parameters using stress-strength interference (SSI) theory. To be specific, the sparse grid numerical integration (SGNI) method is applied to solve the statistical characteristic parameters of the dynamic reliability of the system. The probability distribution of the performance function is obtained with the fourth-moment SPA method. Test examples show that the results of the proposed method are consistent with the results obtained by the Monte Carlo simulation (MCS) and superior to the maximum entropy with fractional moments (ME-FM) method, which verifies the effectiveness of this approach. Finally, the dynamic reliability of the gear transmission system with respect to load times is evaluated.  相似文献   

16.
Despite many advances in the field of computational system reliability analysis, estimating the joint probability distribution of correlated non-normal state variables on the basis of incomplete statistical data brings great challenges for engineers. To avoid multidimensional integration, system reliability estimation usually requires the calculation of marginal failure probability and joint failure probability. The current article proposed an integrated approach for estimating system reliability on the basis of the high moment method, saddle point approximation, and copulas. First, the statistic moment estimation based on the stochastic perturbation theory is presented. Thereafter, by constructing CGF (concise cumulant generating function) for the state variable with its first four statistical moments, a fourth moment saddle point approximation method is established for the component reliability estimation. Second, the copula theory is briefly introduced and extensively utilized two-dimensional copulas are presented. The best fit copula for estimating the probability of system failure is selected according to the AIC (Akaike Information Criterion). Finally, the derived method is applied to three numerical examples for the sake of a comprehensive validation.  相似文献   

17.
This paper presents a new and alternative computational tool for predicting failure probability of structural/mechanical systems subject to random loads, material properties, and geometry based on high‐dimensional model representation (HDMR) generated from low‐order function components. HDMR is a general set of quantitative model assessment and analysis tools for capturing the high‐dimensional relationships between sets of input and output model variables. It is a very efficient formulation of the system response, if higher‐order variable correlations are weak, allowing the physical model to be captured by the lower‐order terms and facilitating lower‐dimensional approximation of the original high‐dimensional implicit limit state/performance function. When first‐order HDMR approximation of the original high‐dimensional implicit limit state/performance function is not adequate to provide the desired accuracy to the predicted failure probability, this paper presents an enhanced HDMR (eHDMR) method to represent the higher‐order terms of HDMR expansion by expressions similar to the lower‐order ones with monomial multipliers. The accuracy of the HDMR expansion can be significantly improved using preconditioning with a minimal number of additional input–output samples without directly invoking the determination of second‐ and higher‐order terms. The mathematical foundation of eHDMR is presented along with its applicability to approximate the original high‐dimensional implicit limit state/performance function for subsequent reliability analysis, given that conventional methods for reliability analysis are computationally demanding when applied in conjunction with complex finite element models. This study aims to assess how accurately and efficiently the eHDMR approximation technique can capture complex model output uncertainty. The limit state/performance function surrogate is constructed using moving least‐squares interpolation formula by component functions of eHDMR expansion. Once the approximate form of implicit response function is defined, the failure probability can be obtained by statistical simulation. Results of five numerical examples involving elementary mathematical functions and structural/solid‐mechanics problems indicate that the failure probability obtained using the eHDMR approximation method for implicit limit state/performance function, provides significant accuracy when compared with the conventional Monte Carlo method, while requiring fewer original model simulations. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
One of the major difficulties in solving stochastic mechanics problems is the curse of dimensionality, where an exponential increase in the dimension of the problem is encountered with the increase in the number of random variables and/or order of expansion considered in any approximation. A prominent method in addressing the curse of dimensionality is ANOVA dimension Decomposition (ADD), which represents a mathematical function with multiple lower variate functions. These lower variate functions are represented using orthogonal polynomials, which yields Polynomial Dimensional Decomposition (PDD). In recent articles, the authors proposed an Iterative Polynomial Chaos (ImPC) based method for the solution of structural mechanics problems, where computational efficacy of ImPC was demonstrated against Polynomial Chaos (PC). In ImPC, the problems are solved iteratively using smaller sizes of PC expansions. Thus, it reduces the curse of dimensionality of PC expansion. The PDD reduces the size of the system matrix by considering a fewer number of random variables at a time, while ImPC can be considered to solve each components of PDD iteratively so that a converged solution can be achieved without increasing the order of expansion, which is termed as iterative PDD in the present study. Thus, the overall convergence can be achieved with a lesser size of the system matrix, which enables to perform analyses with a lesser computational facility. Further, the stiffness matrix size can be reduced by considering the random field at Gauss points instead of the mid point. Numerical studies with both Gaussian and non-Gaussian random field of Young’s modulus are conducted, and computational efficiency of the iterative PDD is compared with that of PDD, ImPC, and first order perturbation method. The iterative PDD is observed to be computationally less demanding and exhibits reduced dimensional curse.  相似文献   

19.
谱表示法模拟风场的误差分析   总被引:1,自引:1,他引:1  
胡亮  李黎  樊剑  方秦汉 《振动与冲击》2007,26(4):51-57,108
研究了原型谱表示法模拟的非各态历经性多变量风场的统计矩的时域估计值和目标值之间误差的概率描述。基于原型谱表示法的模拟公式,以三变量风场为例,导出了模拟结果的均值、相关函数、功率谱密度函数和根方差等四项统计特征的单样本时域估计表达式,它们是随机变量或随机过程。运用概率论的计算方法,推导出了上述随机变量或过程的前二阶矩的解析表达式,得到了模拟风场的统计特征时域估计的偏度误差和随机误差。将三变量过程的结果加以推广,给出了误差计算的通式。通过算例中统计误差值和理论误差值的对比,验证解析解的正确性。探讨了可能的降低随机误差的方法。求得的误差闭合解将有利于结合误差传播理论进行可靠性分析。  相似文献   

20.
In this paper, an improved perturbation method is developed for the statistical identification of structural parameters by using the measured modal parameters with randomness. On the basis of the first‐order perturbation method and sensitivity‐based finite element (FE) model updating, two recursive systems of equations are derived for estimating the first two moments of random structural parameters from the statistics of the measured modal parameters. Regularization technique is introduced to alleviate the ill‐conditioning in solving the equations. The numerical studies of stochastic FE model updating of a truss bridge are presented to verify the improved perturbation method under three different types of uncertainties, namely natural randomness, measurement noise, and the combination of the two. The results obtained using the perturbation method are in good agreement with, although less accurate than, those obtained using the Monte Carlo simulation (MCS) method. It is also revealed that neglecting the correlation of the measured modal parameters may result in an unreliable estimation of the covariance matrix of updating parameters. The statistically updated FE model enables structural design and analysis, damage detection, condition assessment, and evaluation in the framework of probability and statistics. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号