首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ha  Da  Zheng  Gang  Loáiciga  Hugo A.  Guo  Wei  Zhou  Haizuo  Chai  Jinchun 《Acta Geotechnica》2021,16(4):1303-1314
Acta Geotechnica - A large volume of groundwater is withdrawn annually in Tianjin Municipality, China, to meet agricultural, industrial, and municipal water uses. Groundwater overdraft in the urban...  相似文献   

2.
Investigation of groundwater level fluctuations in the north of Iran   总被引:2,自引:1,他引:2  
Groundwater is the main source of water supply for drinking and agriculture uses in Mazandaran province. In recent years, the rapid growth of population and the increased need for water and food has put its land and water resources under severe stress. The main objective of this study was to investigate the temporal trends in annual, seasonal and monthly groundwater level using the Mann–Kendall test and the Sen’s slope estimator in the area during 1985–2007. The results indicated a mix of negative and positive trends in the groundwater level series. However, the positive trends were much more than negative ones. The statistical tests detected a significant increasing trend in more than 28% of the wells. The stronger increasing trends were identified in the series in summer and spring compared with those in autumn and winter. Moreover, the highest numbers of wells with significant positive trends occurred in August and July, respectively. The results of spatial analysis showed that the significant positive trends were concentrated in the central parts of Mazandaran province where paddy fields are the major water demanders. Analysis of climatic parameters revealed that decreasing trend of relative humidity and increasing trends of minimum and maximum air temperature can be attributed to groundwater level fluctuations in the study region. The research will be helpful for planners and policy makers to allocate groundwater resources in different sectors including agriculture, drinking and industry.  相似文献   

3.
Nitrate contamination in irrigation groundwater,Isfahan, Iran   总被引:1,自引:1,他引:0  
Groundwater is one of the major sources of water in Isfahan. Efficient management of these resources requires a good understanding of its status. This paper focuses on the hydrochemistry and also it wants to assess the nitrate concentration in irrigation groundwater of Isfahan suburb. All the groundwater samples are grouped into three categories, including Na-Cl + Ca-Cl (63 %), Na-SO4 + Ca-SO4 (23 %) and Ca-HCO3 (14 %). According to the EC and SAR, the most dominant classes are C3S1, C4S2 and C4S3. 55 % of samples indicate very high salinity and medium to very high alkalinity that is not suitable for irrigation. 84 % of the groundwater samples show nitrate contents higher than HAV (13 mg l?), while more than 25 % exceeded the maximum contamination level (44.27 mg l?) according to EPA regulations. The horizontal and vertical distribution patterns of nitrate in groundwater samples show a surficial origin for nitrate contamination. The high nitrate content can be attributed to the agricultural activities along with domestic sewage and industrial wastewaters in populated area. Based on results, using high nitrate groundwater for irrigation can minimize the requirement for inorganic fertilizers and reduce the cost of cultivation and nitrate contamination.  相似文献   

4.
Groundwater-level fluctuations at a large scale have a significant effect on the preservation and restoration of vegetation. This study determined suitable groundwater depth within which natural vegetation grows well, and analysed the effect of groundwater regulation on vegetation restoration in Tianjin City, northern China. Normal and lognormal distributions were used to fit the curve of the relation between vegetation and groundwater depth. The groundwater depth range corresponding to the higher frequency of vegetation distribution was regarded as the ‘suitable water depth’ range for vegetation growth. The suitable groundwater depth for shrub growth was 3–5 m and for grass growth 1–3 m. A groundwater flow model predicted the future changes of groundwater depths in the vegetation distribution area under the condition that the current levels of groundwater extraction are maintained. The results showed that there is potential for the extraction of groundwater in shrubland areas, but for grassland areas the water-table elevation showed a downward trend, meaning that water shortages in some areas may be more severe in the future. Finally, based on the current groundwater extraction regime, two regulation schemes were developed: (1) for shrubland, groundwater extraction was reduced by 10% in the ecological water deficit areas, and extraction was increased by 10% in the ecological water surplus and suitable areas, and (2) for grassland, groundwater recharge was increased by the restoration of the wetland areas. In conclusion, the groundwater depths in most of the area would be more suitable for vegetation growth under the regulation schemes.  相似文献   

5.
Hydrogeochemical assessment of groundwater in Isfahan province, Iran   总被引:2,自引:2,他引:0  
Groundwater quality in five catchment areas in Isfahan province of Iran is assessed by measuring physicochemical parameters including major cation and anion compositions, pH, total dissolved solid, electrical conductivity and total hardness. For this purpose, 567 piezometric well samples were collected in October 2007. The abundance of major ions in four of the catchment areas including Gavkhuni, Ardestan, Salt lake and Central Iran desert basins is similar and follows Cl??>?SO4 2??>?Na+?>?HCO3 ??>?Ca2+?>?Mg2+?>?K+?>?CO3 2? trend, while in the fifth basin (Karoon), the trend changes into HCO3 ??>?Ca2+?>?Cl??>?SO4 2??>?Mg2+?>?Na+?>?K+?>CO3 2?. In general, four water facies are determined and it is shown that alkali elements and strong acids are dominating over alkaline earth and weak acids. Statistical analysis including Mann?CWhitney U test indicate that physicochemical parameters in three of the five investigated basins [Gavkhuni, Ardestan and Central Iran desert (CID)] are similar, while Karoon and salt lake basins display different characteristics. The result indicate that groundwater west of the province is suitable for irrigation, while in the central and eastern parts of the province the groundwater loses its quality for this purpose. It is concluded that mineral dissolution and evapotranspiration are the main processes that determine major ion compositions.  相似文献   

6.
Nitrate pollution of groundwater in Toyserkan,western Iran   总被引:3,自引:2,他引:3  
A total of 95 groundwater samples were collected from Toyserkan, western Iran to assess the chemical composition and nitrate (NO3 ) status of groundwater. The most prevalent water type is Ca–HCO3 followed by water types Ca–Mg–HCO3. In comparison with the World Health Organization (WHO) drinking water guideline of 50 mg l−1 for NO3 , a total of nine wells (9.5%) showed higher concentrations. In 36% of samples (34) NO3 concentration was low (<20 mg l−1), and in 53.7% of samples (51), in the range of 20–50 mg l−1. The samples were classified into four groups based on NO3 and chloride (Cl) concentrations. Of the samples, 40% were classified as group 4 and were relatively high in Cl and NO3 (Cl > 47 mg l−1, NO3  > 27 mg l−1). The high correlation between NO3 and Cl (r = 0.86, p < 0.01) is consistent with a manure source, resulting from the practice of adding salt to animal feed. Pollution of groundwaters appeared to be affected by the application of inorganic fertilizer at greater than agronomic rates, Cl-salt inputs, and irrigation practice.  相似文献   

7.
Patterns in groundwater chemistry resulting from groundwater flow   总被引:11,自引:7,他引:11  
 Groundwater flow influences hydrochemical patterns because flow reduces mixing by diffusion, carries the chemical imprints of biological and anthropogenic changes in the recharge area, and leaches the aquifer system. Global patterns are mainly dictated by differences in the flux of meteoric water passing through the subsoil. Within individual hydrosomes (water bodies with a specific origin), the following prograde evolution lines (facies sequence) normally develop in the direction of groundwater flow: from strong to no fluctuations in water quality, from polluted to unpolluted, from acidic to basic, from oxic to anoxic–methanogenic, from no to significant base exchange, and from fresh to brackish. This is demonstrated for fresh coastal-dune groundwater in the Netherlands. In this hydrosome, the leaching of calcium carbonate as much as 15 m and of adsorbed marine cations (Na+, K+, and Mg2+) as much as 2500 m in the flow direction is shown to correspond with about 5000 yr of flushing since the beach barrier with dunes developed. Recharge focus areas in the dunes are evidenced by groundwater displaying a lower prograde quality evolution than the surrounding dune groundwater. Artificially recharged Rhine River water in the dunes provides distinct hydrochemical patterns, which display groundwater flow, mixing, and groundwater ages. Received, May 1998 · Revised, August 1998 · Accepted, October 1998  相似文献   

8.
 Before tunnel construction began, the groundwater chemical compositions and levels around the tunnel were studied to determine if water compositions could predict whether surface water will be influenced by tunnel construction. When the chemical composition of the well and springwater was similar to that of the tunnel seepage water, and the altitude of the well and spring was above the tunnel level, the groundwater level in the well and spring was influenced by draining tunnel seepage water. Therefore, comparing the chemical compositions of surface water and groundwater may be used for predictive purposes. However, the results of this study showed there was no noticeable chemical composition change in springwater prior to changes in groundwater level at a particular site. The changes in the hydrology of the plateau caused by tunnel construction were also studied, using measurements of the changes in groundwater chemistry as well as changes in groundwater levels. Prior to tunnel construction, river discharge was greater. Following tunnel construction, some river discharge decreased because springwater was drained as tunnel seepage water and the spring in the catchment dried up. Tritium concentration indicated that 3 years after tunnel construction, surface water did not reach tunnel levels in spite of groundwater level lowering and remaining unconfined groundwater being drained. Received: 17 January 1996 · Accepted: 10 July 1996  相似文献   

9.
10.
11.
Groundwater in Farashband plain, Southern Iran, is the main source of water for domestic and agricultural uses. This study was carried out to assess the overall water quality and identify major variables affecting the groundwater quality in Farashband plain. The hydrochemical study was undertaken by randomly collecting 84 groundwater samples from observation wells located in 13 different stations covering the entire plain in order to assess the quality of the groundwater through analysis of major ions. The water samples were analyzed for various physicochemical attributes. Groundwater is slightly alkaline and largely varies in chemical composition; e.g., electrical conductivity (EC) ranges from 2314 to 12,678 μS/cm. All the samples have total dissolved solid values above the desirable limit and belong to a very hard type. The abundance of the major ions is as follows: Na+ > Ca2+ > Ma2+ > K+ and Cl? > SO4 2– > HCO3 ?. Interpretation of analytical data shows three major hydrochemical facies (Ca–Cl, Na–Cl, and mixed Ca–Mg–Cl) in the study area. Salinity, total dissolved solids, total hardness, and sodium percentage (Na%) indicate that most of the groundwater samples are not suitable for irrigation as well as for domestic purposes and far from drinking water standard. A comparison of groundwater quality in relation to drinking water standards showed that most of the water samples are not suitable for drinking purposes. Based on the US salinity diagram, most of samples belong to high salinity and low to very high sodium type.  相似文献   

12.
Shallow groundwater and hot springs were collected from northeastern Guangdong Province, Southeast China, to determine the concentrations and fractionation patterns of rare-earth elements(REE). The results show that the La, Ce and Nd of REEs are abundant in groundwater and rock samples, and the ∑REE contents in groundwater and rock samples range from 126.5 to 2875.3 ng/L, and 79.44 to 385.85 mg/L, respectively. The shallow groundwater has slightly HREE-enriched PAAS-normalized patterns. However, the granitic rocks PAAS-normalized patterns, with remarkable negative Eu anomalies, are different from that of shallow groundwater. The enrichment of HREE is considered to be controlled by REE complexation and readsorption for most groundwater has Ce and Eu positive anomalies. The Ce and Eu anomalies in groundwater are controlled by redox conditions. Moreover, the Fe-contain sediments dissolution and/or the reduction of Fe oxyhydroxides are another factor contributing to Ce anomalies. The Eu anomalies in groundwater are controlled by the preferential mobilization of Eu2+ during water-rock interaction compared to Eu3+.  相似文献   

13.
14.
Many German lakes experienced significant water level declines in recent decades that are not fully understood due to the short observation period. At a typical northeastern German groundwater‐fed lake with a complex basin morphology, an acoustic sub‐bottom profile was analysed together with a transect of five sediment cores, which were correlated using multiple proxies (sediment facies, μ‐XRF, macrofossils, subfossil Cladocera). Shifts in the boundary between sand and mud deposition were controlled by lake level changes, and hence, allowed the quantification of an absolute lake level amplitude of ~8 m for the Holocene. This clearly exceeded observed modern fluctuations of 1.3 m (AD 1973–2010). Past lake level changes were traced continuously using the calcium‐record. During high lake levels, massive organic muds were deposited in the deepest lake basin, whereas lower lake levels isolated the sub‐basins and allowed carbonate deposition. During the beginning of the Holocene (>9700 cal. a BP), lake levels were high, probably due to final melting of permafrost and dead‐ice remains. The establishment of water‐use intensive Pinus forests caused generally low (3–4 m below modern) but fluctuating lake levels (9700–6400 cal. a BP). Afterwards, the lake showed an increasing trend and reached a short‐term highstand at c. 5000 cal. a BP (4 m above modern). At the transition towards a cooler and wetter late Holocene, forests dominated by Quercus and Fagus and initial human impact probably contributed more positively to groundwater recharge. Lake levels remained high between 3800 and 800 cal. a BP, but the lake system was not sensitive enough to record short‐term fluctuations during this period. Lake level changes were recorded again when humans profoundly affected the drainage system, land cover and lake trophy. Hence, local Holocene water level changes reflect feedbacks between catchment and vegetation characteristics and human impact superimposed by climate change at multiple temporal scales.  相似文献   

15.
16.
Hormozgan Province with arid climate is an important source of energy resources for Iran. This study investigates the results of hydrogeochemical investigation and its tectonic control in Hormozgan Province, Southern Iran. The chemical analysis of 158 groundwater samples was evaluated to determine the hydrogeochemical processes and ion concentration background in the region. Several NW-SE trending and NE-dipping basement reverse faults have intersected the area and have divided it into four tectonic terranes. Huge extension of Hormuz Formation in Zagros Foredeep tectonic terrane has increased the cations, Cl and SO4 concentration in groundwaters. HCO3 concentration in Sanandaj-Sirjan Zone and High Zagros is the result of silicate weathering or carbonates. Eighty-three percent of samples have negative CAI values in High Zagros, Sanandaj-Sirjan Zone, and eastern Zagros Fold Thrust Belt. The dominant hydrochemical facies of groundwater are Na-Mg-Ca-Cl (25.3% of samples) and Na-Mg-Cl (20.9% of samples). They are confined to the west of Main Zagros Reverse Fault and east of High Zagros Fault, respectively. The salt content of the groundwater indicates samples with very high salinity—as a result of Hormuz Formation—are mainly limited to the west of High Zagros Fault while samples with high to medium salinity are mainly limited to the east of this fault. Eastward increment of rock weathering is controlled with thrust faults activity of the area and southwestward migration of deformation front. Westward increment of evaporites is compatible with Hormuz Formation/salt dome density through the area.  相似文献   

17.
The groundwater in the karst region of northeastern Vietnam is found in various structural zones such as the Ha Lang, Song Hien, Hon Gai, Song Lo, Song Gam, and Hoang Lien Son Zones, etc. Results from this study show that groundwater in this region is at different depths: ~120 m deep at Quang Ninh, ~100 m at Lang Son, ~80 m at Cao Bang (The most water-abundant depth observed at Cao Bang varies from 40 to 45 m) while it varies from 18–25 to 80 m deep at Quan Ba (Ha Giang), especially at Meo Vac (Ha Giang), where groundwater is observed at 700–800 m deep (equivalent to local base level of the Nho Que River). Overall, groundwater in the region is fresh with total minerals varying from 250 to 400 mg/l; except for the coastal area of Quang Ninh, where groundwater is characterized by much higher total minerals (M = 3–18 g/l) due to the mixing with the saline sea water. The chemistry of water in the region demonstrates that the water is mainly bicarbonate with a [HCO3 ?] concentration varying from 150 to 265 mg/l, pH is of 6.5–8.1, and its hardness is of 3.7–6.0 meq/l.  相似文献   

18.
This work studies the water quality of the Pergamino–Arrecifes River zone in the Rolling Pampa, northeast Buenos Aires Province, Argentina. Temperature, pH, specific conductivity, Na, K, Mg, Ca, , Cl, , , Si, Ag, Al, As, B, Ba, Be, Br, Cd, Co, Cr, Cu, Fe, Hg, Li, Mn, Mo, Ni, P, Pb, Se, Tl, U, V, Zn, and the environmental stable δ18O and δ2H isotope ratios were determined in 18 sampling stations. Natural and anthropogenic features influence surface and groundwater quality. Point pollution sources (septic wells and other domestic and farming effluents) increase the nitrate concentration. The values of pH, , Al, As, B, Fe, and Mn exceed the respective Argentine reference thresholds in different sampling stations for human drinking water; B, Mo, U, and V for irrigation; and V and Zn for cattle consumption.  相似文献   

19.
Groundwater is typically the only water source in arid regions, and its circulation processes should be better understood for rational resource exploitation. Stable isotopes and major ions were investigated in the northeastern Tengger Desert, northern China, to gain insights into groundwater recharge and evolution. In the northern mountains, Quaternary unconsolidated sediments, exposed only in valleys between hills, form the main aquifer, which is mainly made of aeolian sand and gravel. Most of the mountain groundwater samples plot along the local meteoric water line (LMWL), with a more depleted signature compared to summer precipitation, suggesting that mountain groundwater was recharged by local precipitation during winter. Most of the groundwater was fresh, with total dissolved solids less than 1 g/L; dominant ions are Na+, SO4 2? and Cl?, and all mineral saturation indices are less than zero. Evaporation, dissolution and cation exchange are the major hydrogeochemical processes. In the southern plains, however, the main aquifers are sandstone. The linear regression line of δD and δ 18O of groundwater parallels the LMWL but the intercept is lower, indicating that groundwater in the plains has been recharged by ancient precipitation rather than modern. Both calcite and dolomite phases in the plains groundwater are close to saturation, while gypsum and halite can still be dissolved into the groundwater. Different recharge mechanisms occur in the northern mountains and the southern plains, and the hydraulic connection between them is weak. Because of the limited recharge, groundwater exploitation should be limited as much as possible.  相似文献   

20.
The chemical analysis of 19 water wells in Ferdows area, Northeastern Iran, has been evaluated to determine the hydrogeochemical processes and ion concentration background in the region. In the study area, the order of cation and anion abundance is Na+ > Ca2+ > Mg2+ > K+ and Cl? > SO 4 ?2  > HCO3 ? > NO3 ?, respectively, and the dominating hydrochemical types are Na–Cl. Most metal concentrations in water depend on the mineral solubility, and pH, Eh, and salinity of the solution. Their ΣREE concentrations showed excellent correlations with parameters such as TDS and pH. North American Shale Composite (NASC)-normalized REE patterns are enriched in the HREEs relative to the LREEs for all groundwaters. They all have positive Eu anomalies (Eu/Eu* = 0.752–3.934) and slightly negative Ce anomalies (Ce/Ce* = 0.019–1.057). Reduction–oxidation, complexation, desorption, and re-adsorption alter groundwater REE concentrations and fractionation patterns. The positive Eu anomalies in groundwaters are probably due to preferential mobilization of Eu2+ relative to the trivalent REEs in the reducing condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号