首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Borborema Pegmatitic Province (BPP), northeastern Brazil, is historically important for tantalum mining and also famous for top-quality specimens of exotic Nb–Ta oxides and, more recently, for the production of gem quality, turquoise blue, ‘Paraíba Elbaite.’ With more than 750 registered mineralized rare-element granitic pegmatites, the BPP extends over an area of about 75 by 150 km in the eastern part of the Neoproterozoic Seridó Belt. The Late Cambrian pegmatites are mostly hosted by a sequence of Neoproterozoic cordierite–sillimanite biotite schists of the Seridó Formation and quartzites and metaconglomerates of the Equador Formation. The trace-element ratios in feldspar and micas allow to classify most pegmatites as belonging to the beryl–columbite phosphate subtype. Electron microprobe analyses (EMPA) of columbite, tapiolite, niobian–tantalian rutile, ixiolite and wodginite group minerals from 28 pegmatites in the BPP are used to evaluate the effectiveness of Nb–Ta oxide chemistry as a possible exploration tool, to trace the degree of pegmatite fractionation and to classify the pegmatites. The columbite group mineral composition allows to establish a compositional trend from manganoan ferrocolumbite to manganocolumbite and on to manganotantalite. This trend is typical of complex spodumene- and/or lepidolite-subtype pegmatites. It clearly contrasts with another trend, from ferrocolumbite through ferrotantalite to ferrowodginite and ferrotapiolite compositions, typical of pegmatites of the beryl–columbite phosphate subtype. Large scatter and anomalous trends in zoned crystals partially overlap and conceal the two main evolution patterns. This indicates that a large representative data set of heavy mineral concentrate samples, collected systematically along cross-sections, would be necessary to predict the metallogenetic potential of individual pegmatites. Other mineral species, e.g. garnets and/or tourmaline, with a more regular distribution than Nb–Ta oxides, would be more appropriate and less expensive for routine exploration purposes. The currently available Nb–Ta oxide chemistry data suggest the potential for highly fractionated Ta–Li–Cs pegmatites in the BPP, so far undiscovered, and encourages further, more detailed research.  相似文献   

2.
Small, low-grade, granitic pegmatite U–Th–REE deposits are found throughout the Grenville geological province of eastern Canada. Groundwater quality at historical mining properties in the Bancroft area was investigated in order to better understand the mobility of trace elements that may pose health risks if there is renewed development of this class of mineral deposit. Groundwater samples were obtained from diamond drill holes, flowing adits and flooded mine shafts. Uranium occurs almost entirely in the dissolved (<0.45 μm) phase and is found at concentrations reaching 2579 μg/L. The Canadian maximum acceptable concentration for U in drinking water (0.02 mg/L) was exceeded in 70% of samples. Regulatory limits for 226Ra (0.5 Bq/L) and for 210Pb (0.2 Bq/L) were generally exceeded in these samples as well. Speciation modeling indicates that over 98% of dissolved U is in the form of highly mobile uranyl-Ca–carbonate complexes known to inhibit U adsorption. Uranium concentrations in groundwater appear to be correlated with the uranothorite content of the deposits rather than with their U grade. Uranothorite may be more soluble than uraninite, the other ore mineral, because of its non-ideal composition and metamict structure. Thorium, released concomitantly with U during the dissolution of uranothorite and thorian uraninite, exhibits median and maximum total concentrations of only 0.1 and 11 μg/L, respectively. Mass balance and stoichiometric considerations indicate that almost all Th is immobilized very close to its source. The sums of total light REE (La–Gd) concentrations have median and maximum values of 6 and 117 μg/L, respectively. The sums of total heavy REE (Tb–Lu) concentrations have median and maximum values of 0.8 and 21 μg/L, respectively. Light REE are derived mainly from the dissolution of metamict allanite whereas the sources of heavy REE are widely dispersed among accessory minerals. Fractionation patterns of REE in the dissolved phase are flat or concave, with negative Ce anomalies associated with more oxic groundwaters. The data suggest preferential LREE and HREE complexation with organic and carbonate ligands in the dissolved phase, respectively. Fractionation patterns in the suspended particulate phase exhibit decreasing enrichment with atomic number from La to Gd and a flat profile from Tb to Lu. This is explained by preferential sorption of LREE and uniform sorption of HREE. Manganese particulates are the most likely sorbents. Potential health risks from Th or REE in mine waters are unlikely due to the very low mobility of these elements. Uranium, on the other hand, exhibits high mobility in shallow, oxic groundwaters and drainage from some mine adits may require mitigation.  相似文献   

3.
Mineralogy and Petrology - An assemblage of tantalite-(Mn), tantalian rutile, tapiolite-(Fe), titanowodginite, ferrotitanowodginite, and hydroxycalciomicrolite occurs in the Nancy granitic...  相似文献   

4.
5.
A complex assemblage of Nb-Ta-(Sn) oxide minerals occur in a relatively narrow (~1?2 m thick) extensively albitized, Hercynian granitic pegmatite dike intruding biotite granodiorites near Bratislava, SW Slovakia. The dike shows enrichment in beryl (locally Cs-rich) but absence of Li- and B-rich phases. Compositions and textural relationships indicate complex evolutions of Nb-Ta oxide phases with several generations presenting distinct textural and compositional features. The first generation of the Nb-Ta minerals from the quartz-microcline-muscovite zone show Ta,Fe-rich compositions with Ta# [Ta/(Ta + Nb)]?=?0.52?0.70 (Ct I columbite-tantalite), 0.88?0.90 (Tap I ferrotapiolite) and 0.73?0.86 (Fw I ferrowodginite); Mn# [Mn/(Mn + Fe)]?=?0.32?0.49 (Ct I), 0.06?0.10 (Tap I) and 0.33?0.41 (Fw I). The 2nd generation is represented by ferrocolumbite to ferrotantalite (Ct II) in saccharoidal albite zone, replacement zones of Ct II in Ct I, and irregular overgrowths of ferrotapiolite (Tap II) and ferrowodginite (Fw II) on Tap I grains. The minerals of the 2nd generation show decreasing of Ta# in comparison to the 1st group: 0.10?0.60 (Ct II), 0.85?0.87 (Tap II) and 0.73?0.77 (Fw II); Mn# attains 0.30?0.45 (Ct II), 0.06?0.09 (Tap II) and 0.26?0.37 (Fw II). The 3rd generation includes fissure fillings, overgrowths and replacement zones of manganocolumbite and manganotantalite (Ct III), ferrotapiolite (Tap III) and ferrowodginite (Fw III) on the older Nb-Ta phases (Ct I, Tap I, Fw I, Fw II), in the coarse-grained unit. The 3rd population displays distinct Mn# increasing (Ct III: 0.51?0.69, Tap III: 0.11?0.24, Fw III: 0.40?0.41), Ta# values reach 0.16?0.79 (Ct III), 0.88?0.92 (Tap III) and 0.80?0.81 (Fw III). The latest, 4th generation of the Nb-Ta phases represents irregular veinlets and patches of fluorcalciomicrolite, replacing Ct I, Tap I, Fw I, Ct II and Tap III. Decrease of Ta/(Ta + Nb) values in Ct II from the saccharoidal albite unit can be explained by crystallization from the albite-rich melt, which was significantly impoverished in Ta with respect to Nb, after crystallization of Ta-rich phases from the 1st generation (ferrotapiolite I, ferrowodginite I).  相似文献   

6.
The Songshugang granite, hidden in the Sinian metasedimentary stratum, is a highly evolved rare-element granite in northeastern Jiangxi province, South China. The samples were systematically taken from the CK-102 drill hole at the depth of 171–423 m. Four types of rocks were divided from the bottom upwards: topaz albite granite as the main body, greisen nodules, topaz K-feldspar granite and pegmatite layer. Electron-microprobe study reveals that the rare-element minerals of the Songshugang granite are very different from those of other rare-element granites. Mn# [Mn/(Fe + Mn)] and Ta# [Ta/(Nb + Ta)] of columbite-group minerals and Hf# [Hf/(Zr + Hf)] of zircon are nearly constant within each type of rocks. However, back-scattered electron imaging revealed that Nb–Ta oxides and zircon of the Songshugang granite, especially those of topaz albite granite, topaz K-feldspar granite and greisen, are commonly characterized by a specific two-stage texture on the crystal scale. The early-stage Nb–Ta oxide is simply subhedral-shaped columbite-(Fe) (CGM-I) with low Mn# (0.16–0.37) and Ta# (0.05–0.29). Columbite-(Fe) is penetrated by the later-stage tantalite veinlets (CGM-II) or surrounded by complex Nb–Ta–Sn–W mineral assemblages, including tantalite-(Fe), wodginite (sl), cassiterite, and ferberite. Tantalite has wide range of Mn# values (0.15–0.88) from Fe-dominance to Mn-dominance. Wodginite with Ta>Nb has large variable concentrations of W, Sn and Ti. Cassiterite and ferberite are all enriched in Nb and Ta (Nb2O5 + Ta2O5 up to 20.12 wt.% and 31.42 wt.%, respectively), with high Ta# (>0.5). Similar to Nb–Ta oxides and Nb–Ta–Sn–W mineral assemblages, the early-stage zircon is commonly included by the later-stage zircon with sharply boundary. They have contrasting Hf contents, and HfO2 of the later-stage zircon is up to 28.13 wt.%. Petrographic features indicate that the early-stage of columbite and zircon were formed in magmatic environment. However, the later-stage of rare-element minerals were influenced by fluxes-enriched fluids. Tantalite, together with wodginite, cassiterite, and ferberite implies a Ta-dominant media. An interstitial fluid-rich melt enriched in Ta and flux at the magmatic–hydrothermal transitional stage is currently a favored model for explaining the later-stage of rare-element mineralization.  相似文献   

7.
Granitic leucosome and pegmatite are widely distributed within biotite-bearing orthogneiss in the northern part of the Sulu ultrahigh-pressure (UHP) metamorphic terrane, eastern China. A combined study of mineral inclusions, cathodoluminescence (CL) images, U–Pb SHRIMP dates, and in situ trace element and Lu–Hf isotope analyses of zircons provided insight into the nature and timing of partial melting in these rocks. Zircon grains separated from biotite-bearing orthogneiss typically have three distinct domains: (1) pre-metamorphic (magmatic) cores with Qtz + Kfs + Pl + Ap inclusions, which record a Neoproterozoic protolith age of ~ 790 Ma, (2) mantles with Coe + Phe + Ap inclusions that record Triassic UHP age at 227 ± 3 Ma, and (3) narrow rims with quartz inclusions that record HP granulite-facies retrograde metamorphism at ~ 210 ± 3 Ma. In contrast, zircons separated from granitic leucosome have only two distinct domains: (1) the central UHP areas with Coe + Phe + Ap inclusions record Triassic UHP age of 227 ± 3 Ma, and (2) outer magmatic areas with Qtz + Kfs + Ab + Ap inclusions that record partial melting time of 212 ± 2 Ma. Zircons separated from pegmatite contain mineral inclusions of Qtz + Kfs + Ap and show regular magmatic zoning from centre to edge. The centres record partial melting time of 212 ± 2 Ma in line with the outer domains of granitic leucosome, whereas the edges give a younger age of 201 ± 2 Ma related to Pb loss and partial recrystallization during late Triassic regional amphibolite-facies retrogression. These data indicate that partial melting in the north Sulu UHP gneissic rocks took place during post-UHP, retrograde HP granulite-facies metamorphism.Pre-metamorphic (magmatic) zircon cores from biotite-bearing orthogneiss give uniform 176Hf/177Hf of 0.28187 ± 0.00003 (2 SD; standard deviation) corresponding to εHf(790) and Hf model ages (TDM2) of about ? 16.3 and 2.41 Ga, respectively. This is consistent with the generation of its protolith by reworking of Paleoproterozoic to late Archean crust. In contrast, UHP zircon domains from biotite-bearing orthogneiss and granitic leucosome are characterized by distinct trace element composition with low Lu/Hf (< 0.006), low Th/U (< 0.1) and considerably higher, 176Hf/177Hf (0.28233 ± 0.00002; 2 SD) than the pre-metamorphic cores. The uniform but significantly different Hf isotope composition between the UHP (εHf(227) = ? 14.6 ± 0.8; 2 SD) and pre-metamorphic (εHf(227) = ? 27.7) domains indicates equilibration of the Lu–Hf isotope system only within the UHP metamorphic mineral assemblage. The disequilibrium between whole rock and UHP zircon suggests that about two thirds of the whole rock Hf retained in the pre-metamorphic zircon domains. Zircon domains crystallized during partial melting at 212 Ma in granitic leucosome and pegmatites have a Hf isotope composition indistinguishable from that of the UHP zircon domains. This suggests that only Hf (and Zr) equilibrated during UHP metamorphism was remobilized during partial melting while pre-metamorphic zircon remained stable or was not accessible. In contrast, the magmatic zircon edges from pegmatite have somewhat lower 176Hf/177Hf (~ 0.28216) and εHf(t) (? 17.6 ± 1.2; 2 SD) indicating some release of less radiogenic Hf for instance by dissolution of pre-metamorphic zircon during late regional amphibolite-facies retrogression.  相似文献   

8.
《Applied Geochemistry》2003,18(11):1691-1703
Calcareous deposits, mainly consisting of mollusc shell accumulations, which have been dated by the U/Th disequilibrium method, mark the shorelines of paleolake highstands in the Great Chotts Area of Southern Tunisia. The 5 sites studied consist of discontinuous accumulations of fossils of marine-like organisms e.g.: Cerastoderma glaucum, Melania tuberculata, Melanopsis praemorsa, Cerithium rupestre. U/Th isochron plots and age frequency histograms for 39 shell samples are reported here. Limited variations for U content and 234U/238U activity ratios (AR) of shells support the hypothesis of closure of the geochemical system with respect to this element. It is remarkable that 234U/238U AR of shells collected in Chott Fejej or Chott Jerid are clustered around different values, reflecting probably different groundwater recharge from the Continental Intercalaire (CI) or Complexe Terminal (CT) aquifers. Furthermore waters collected near Wadi el Akarit show 234U/238U AR values comparable to those observed for shells. 14C determinations made on aliquots of some of these samples suggested an age distribution between 18 and 34 ka BP. The U/Th data of these 39 shell samples imply that 4 distinct flood episodes of these lakes occurred at about 30, 95–100, 130–150 and 180–200 ka. For the episode centred around 30 ka, the frequency histogram of ages shows a multimodal age group that could represent the existence of several humid pulses rather than a unique event. Moreover, the comparison of δ13C and δ18O with those of older humid Pleistocene phases, when very large palaeolakes have been recorded, suggests that these young carbonate shells are not related to a true highstand lake. It is suggested that they represent a period of less humid climatic conditions with carbonate accumulation in minor water ponds in which intensive biological activity could have taken place. It should be noted that this period was less arid than the present.  相似文献   

9.
Tantalum, an important metal for high-technology applications, is recovered from oxide minerals that are present as minor constituents in rare-metal granites and granitic rare-element pegmatites. Columbite-group minerals (CGM) account for the majority of the current tantalum production; other Ta–Nb oxides (TNO) such as tapiolite, wodginite, ixiolite, rutile and pyrochlore-supergroup minerals may also be used.In this paper mineralogical and geochemical data with a focus on opaque minerals as well as age determinations on CGM using the U–Pb method are presented for 13 rare-element granite and pegmatite districts in Africa, covering Archean, Paleoproterozoic, Neoproterozoic, Paleozoic and Mesozoic provinces. Geological, economic and geochronological data are reviewed.Each period of Ta-ore formation is characterised by peculiar mineralogical and geochemical features that assist in discriminating these provinces. Compositions of CGM are extremely variable: Fe-rich types predominate in the Man Shield (Sierra Leone), the Congo Craton (Democratic Republic of the Congo), the Kamativi Belt (Zimbabwe) and the Jos Plateau (Nigeria). Mn-rich columbite–tantalite is typical of the Alto Ligonha Province (Mozambique), the Arabian–Nubian Shield and the Tantalite Valley pegmatites (southern Namibia). Large compositional variations through Fe–Mn fractionation, followed by Nb–Ta fractionation are typical for pegmatites of the Kibara Belt of Central Africa, pegmatites associated with the Older Granites of Nigeria and some pegmatites in the Damara Belt of Namibia. CGM, tapiolite, wodginite and ixiolite accommodate minor and trace elements at the sub-ppm to weight-percent level. Trace elements are incorporated in TNO in a systematic fashion, e.g. wodginite and ixiolite carry higher Ti, Zr, Hf, Sn and Li concentrations than CGM and tapiolite. Compared to tapiolite, CGM have higher concentrations of all trace elements except Hf and occasionally Zr, Ti, Sn and Mg. The composition of TNO related to rare-element pegmatites is rather different from rare-metal granites: the latter have high REE and Th concentrations, and low Li and Mg. Pegmatite-hosted TNO are highly variable in composition, with types poor in REE, typical of LCT-family pegmatites, and types rich in REE — showing affinity for NYF-family or mixed LCT–NYF pegmatites. Major and trace elements show regional characteristics that are conspicuous in normalised trace element and REE diagrams. In general, CGM from Ta-ore provinces are characterised by the predominance of one type of REE distribution pattern characterised by ratios between individual groups of REE (light, middle, heavy REE) and the presence and intensity of anomalies (e.g. Eu/Eu*).Despite textural complexities such as complex zoning patterns and multiple mineralisation stages, the chemical compositions of CGM, tapiolite and wodginite–ixiolite from rare-metal granite and rare-element pegmatite provinces indicate that they are cogenetic and reflect specific source characteristics that may be used to discriminate among rocks of different origin.Geochronological data produced for CGM from ore districts are discussed together with the respective ore mineralogy and minor and trace element geochemistry of TNO to reconsider the geodynamics of pegmatite formation. In Africa, formation of rare element-bearing pegmatites and granites is related to syn- to late-orogenic (e.g., West African Craton, Zimbabwe Craton), post-orogenic (Kibara Belt, Damara Belt, Older Granites of Nigeria, Adola Belt of Ethiopia) and anorogenic (Younger Granites of Nigeria) tectonic and magmatic episodes. The late-orogenic TNO mineralisation associated with A-type granites in the Eastern Desert of Egypt shares geochemical features with the anorogenic Younger Granites of Nigeria.  相似文献   

10.
Summary The highest (Nb, Ta) content ever encountered in titanite is reported from the Maríkov 11 pegmatite in northern Moravia, Czech Republic. This dike is a member of a pegmatite swarm of the beryl-columbite subtype, metamorphosed under conditions of the amphibolite facies. The pegmatite carries, i.a., rare tantalian rutile intergrown with titanian ixiolite, titanian columbite-tantalite, fersmite and microlite. Fissures generated in the Nb, Ta oxide minerals during deformation are filled with titanite, formed by reaction of the oxide minerals with metamorphic pore fluids. The titanite displays limited degrees of substitutions Na(Ta > Nb)(CaTi)–1, (Ta > Nb)4Ti–4Si–1 and AI(OH, F)(TiO)–1, but an extensive (and occasionally the sole significant) substitution (Al > Fe3+)(Ta > Nb)Ti–2, responsible for widespread oscillatory zoning. This substitution reduces the proportion of the titanite componentsensu stricto, CaTiSiO4,O, to less than 50 mole % in many analyzed spots. The extreme composition corresponds to (Ca0.994Na0.011)(Ti0.436Sn0.007Al0.280Fe3+ 0.006Ta0.199Nb0.079)Si0.988O4(O0.974F0.026). However, so far this substitution fails to generate compositions that would define a new species.
Zusammenfassung Die AI(Nb, Ta)Ti–2 Substitution im Titanit: Auftauchen einer neuen Mineralspecies? Die höchsten (Nb, Ta) Gehalte, die jemals für Titanit gefunden wurden, werden für den Maríkov II Pegmatit in Nordmähren, Tschechei, berichtet. Der Intrusivgang ist Teil eines Amphibolit-faziell überprägten Pegmatitschwarms vom Beryll-Columbit Subtypus Der Pegmatit führt u.a. seltene tantalbetonte Rutile verwachsen mit titanbetontem Ixiolith, titanbetontem Columbit-Tantalit, Fersmit and Mikrolith. Deformationsbedingte Frakturen in den (Nb, Ta) Oxiden sind mit Titanit, als Folge der Reaktion der metamorphen Porenlösungen mit den Oxidmineralen, verkittet. Titanit zeigt begrenzte Substitutionen Na(Ta > Nb)(CaTi)–1,(Ta > Nb)4Ti–4Si–1 and Al(OH, F)(TiO)–1, aber extensive (und gelegentlich einzig bedeutsame) Substitution (Al >> Fe3+)(Ta > Nb)Ti–2, die eine weitverbreitete, oszillierende Zonierung hervorruft. Diese Substitution verringert den Anteil der Titanit-Komponentesensu stricto, CaTiSiO,O, auf weniger als 50 Mol% in vielen Analysen. Die Extremzusammensetzung entspricht Ca0.994Na0.11) (T10.436Sn0.007Al0.280Fe3+ 0.006Ta0.199Nb0.079)Si0.988O4(O0.974F0.026). Das AusmaB dieser Substitution ist unzureichend, um eine neue Mineralspecies zu definieren.
  相似文献   

11.
The Madjarovo ore district is centred on the exposed section of a Lower Oligocene volcano and consists of radially disposed Pb–Zn-precious metal veins and attendant intermediate sulfidation wallrock alteration. Earlier high sulfidation and potassic porphyry style alterations are found in the centre of the district spatially associated with monzonitic intrusions. The total duration of all mineralization and alteration was ca. 300 ka. Stable isotope analyses (S, O, H) have been carried out on a suite of sulfides, sulfates and silicates from the mineralization, high and intermediate sulfidation alterations and a suite of basement rocks. These data range between the following limits: . We also analysed δD of fluid inclusions in quartz and barite for which we obtained, respectively, the ranges of −43.6 to −78.6 and −58.4 to −67.1‰. The data show that high sulfidation alteration was dominated by magmatic fluids with minor meteoric water, whereas the fluids responsible for the intermediate sulfidation alteration were essentially magmatic. The fluids responsible for the intermediate sulfidation Pb–Zn mineralization were mixed magmatic–meteoric and certainly contained a significant meteoric component. Sulphur is likely derived from basement and/or igneous sources. The evolution of alteration and mineralization styles from potassic, porphyry copper style to high sulfidation to intermediate sulfidation can be understood in terms of changing ore fluid composition resulting from an increasing permeability of the system and an increasingly remote source of magmatic fluid with time. These changes link directly to the geological evolution of this volcanic centre.  相似文献   

12.
The (U–Th)/He dating method was applied to fluorite of the La Azul fluorspar deposit, Taxco mining district, Mexico. Ages of ten U-rich (4–94 g/g) samples range from 30 to 33 Ma (mean 32±2 Ma, 1). This age range is interpreted as the time of primary fluorite precipitation and is close to the K/Ar age of sericite from a small fluorspar deposit (Los Tréboles) in the same area, and the K/Ar age of the nearby volcanic succession, which is thought to be the main source of fluorine in both deposits. This age is also in concordance with the very few published ages of epithermal deposits in southern Mexico. The dating of fluorite by other methods, particularly for young samples, is a difficult task. We believe that the (U–Th)/He method, which has been applied before to thermochronological studies of apatite, zircon, titanite and hematite, can be used as a tool for direct dating of fluorite with microgram per gram levels of uranium and thorium.Editorial handling: B. Lehmann  相似文献   

13.
Doklady Earth Sciences - Data indicating the important role of microorganisms in the redistribution of REEs in the weathering crust and the decisive role in the concentration of REEs during the...  相似文献   

14.
Uranium–Pb (zircon) ages are linked with geochemical data for porphyry intrusions associated with giant porphyry Cu–Au systems at Oyu Tolgoi to place those rocks within the petrochemical framework of Devonian and Carboniferous rocks of southern Mongolia. In this part of the Gurvansayhan terrane within the Central Asian Orogenic Belt, the transition from Devonian tholeiitic marine rocks to unconformably overlying Carboniferous calc-alkaline subaerial to shallow marine volcanic rocks reflects volcanic arc thickening and maturation. Radiogenic Nd and Pb isotopic compositions (εNd(t) range from + 3.1 to + 7.5 and 206Pb/204Pb values for feldspars range from 17.97 to 18.72), as well as low high-field strength element (HFSE) contents of most rocks (mafic rocks typically have < 1.5% TiO2) are consistent with magma derivation from depleted mantle in an intra-oceanic volcanic arc. The Late Devonian and Carboniferous felsic rocks are dominantly medium- to high-K calc-alkaline and characterized by a decrease in Sr/Y ratios through time, with the Carboniferous rocks being more felsic than those of Devonian age. Porphyry Cu–Au related intrusions were emplaced in the Late Devonian during the transition from tholeiitic to calc-alkaline arc magmatism. Uranium–Pb (zircon) geochronology indicates that the Late Devonian pre- to syn-mineral quartz monzodiorite intrusions associated with the porphyry Cu–Au deposits are ~ 372 Ma, whereas granodiorite intrusions that post-date major shortening and are associated with less well-developed porphyry Cu–Au mineralization are ~ 366 Ma. Trace element geochemistry of zircons in the Late Devonian intrusions associated with the porphyry Cu–Au systems contain distinct Th/U and Yb/Gd ratios, as well as Hf and Y concentrations that reflect mixing of magma of distinct compositions. These characteristics are missing in the unmineralized Carboniferous intrusions. High Sr/Y and evidence for magma mixing in syn- to late-mineral intrusions distinguish the Late Devonian rocks associated with giant Cu–Au deposits from younger magmatic suites in the district.  相似文献   

15.
Electron microprobe analyses of zoned columbite-tantalite crystals from the granitic pegmatites of the Eräjärvi area in Orivesi, southern Finland indicate wide compositional variation within the series FeNb2O6-FeTa2O6-MnNb2O6-MnTa2O6, especially in specimens from thin pegmatite dikes.Most crystals show gentle progressive zoning characterized by small-scale variations in the major elements. Where the compositional variation is large, backscattered electron images indicate oscillatory or patchy zoning or various replacement textures.The zones in oscillatory zoned crystals are usually 1–50 μm in width, exceptions reaching 50–120 μm. The wider zones often consist of a group of very narrow subzones of only slightly different composition. Zoning is due mainly to the compositional variation in Ta and Nb. In two of these crystals, the oscillations in Mn follow the strongest oscillations in Nb content.Patchy zoned crystals exhibit corroded cores of early columbite-tantalite, surrounded by later zones enriched in Ta. The mottled appearance of such crystals results from two or more successive replacements. Replacement tongues or network-like replacement textures are typical in the rims of some crystals.The zoning of the columbite-tantalite is related to the complex crystallization history of the pegmatite dikes. The main factors controlling oscillatory zoning are considered to be the growth dynamics of the crystals, the concentration and diffusion of the main elements, and the successive flows of the magma in an intrusion channel. The generation of a corrosive supercritical vapor phase at the end of magmatic crystallization caused resorption, patchy zoning and the replacement of the columbite-tantalite.  相似文献   

16.
Mariupolite, aegirine-albite nepheline syenite, outcropping only in the Oktiabrski massif in south-eastern Ukraine, is a potential resource of Nb, Zr and REE for future exploration and development. Some types of this rock can be also used in ceramics, glass and building industry and jewellery. Mariupolite is composed of (1) magmatic and (2) subsolidus and hydrothermal components. The magmatic assemblage includes zircon, aegirine, nepheline, albite, K-feldspar, pyrochlore, fluorapatite, fluorbritholite-(Ce) and magnetite. Alkaline-carbonate-chloride-rich fluids exsolved very early in the history of the rock, in a late stage of, or directly after, its consolidation, induced intensive high-temperature alteration of the primary mariupolite components resulted in formation of cancrinite, calcite, fluorite, REE-bearing minerals such as monazite, parasite-(Ce), bastnäsite-(Ce), as well as sodalite, natrolite and hematite. The genesis of this peculiar mineralization seems to be associated with multistage magmatic and tectonic activity of the Ukrainian Shield and fluids mediated metasomatic processes.  相似文献   

17.
Doklady Earth Sciences - This paper reports on the results of studies of the carbonate–fluoride isolations with extremely high Y and REE concentrations from biotite–arfvedsonite granite...  相似文献   

18.
Spinels, Fe–Ti oxide minerals, apatites, and carbonates hosted in ophiolitic serpentinites and metagabbros of Gabal Garf (southern ED) and Wadi Hammariya (central ED) of Egypt are discussed. Microscopic and electron probe studies on these minerals are made to evaluate their textural and compositional variations. Alteration of chromites led to form ferritchromite and magnetite; rutile–magnetite intergrowths and martite are common in serpentinites. Fine trillis exsolution of ilmenite–magnetite and ilmenite–hematite and intergrowth of rutile–magnetite and ilmenite–sphene are recorded. Composite intergrowth grains of titanomagnetite–ilmenite trellis lamellae are common in metagabbros. The formation of ilmenite trellis and lamellae in magnetite and titanomagnetite indicate an oxidation process due to excess of oxygen contained in titanomagnetite; trapped and external oxidizing agents. This indicates the high P H2O and oxygen fugacity of the parental magma. The sulfides minerals include pyrrhotite, pyrite and chalcopyrite. Based on the chemical characteristics, the Fe–Ti oxide from the ophiolitic metagabbros in both areas corresponds to ilmenite. The patites from the metagabbros are identified as fluor-apatite. Carbonates are represented by dolomites in serpentinites and calcite in metagabbros. Spinel crystals in serpentinites are homogenous or zoned with unaltered cores of Al-spinel to ferritchromit and Cr-magnetite toward the altered rims. Compared to cores, the metamorphic rims are enriched in Cr# (0.87–1.00 vs. 0.83–0.86 for rims and cores, respectively) and impoverished in Mg# (0.26–0.48 vs. 0.56–0.67) due to Mg–Fe and Al (Cr)–Fe3+ exchange with the surrounding silicates during regional metamorphism rather than serpentinization process. The Fe–Ti oxides have been formed under temperature of ~800 °C for ilmenite. Al-spinels equilibrated below 500–550 °C, while the altered spinel rims correspond to metamorphism around 500–600 °C. Geochemical evidence of the podiform Al-spinels suggest a greenschist up to lower amphibolite facies metamorphism (at 500–600 °C), which is isofacial with the host rocks. Al-spinel cores do not appear to have re-equilibrated completely with the metamorphic spinel rims and surrounding silicates, suggesting relic magmatic composition unaffected by metamorphism. The composition of Al-spinel grains suggest an ophiolitic origin and derivation by crystallization of boninitic magma that belonging to a supra-subduction setting could form either in forearcs during an incipient stage of subduction initiation or in back-arc basins.  相似文献   

19.
The study of re-homogenized melt inclusions in the same growth planes of quartz of pegmatites genetically linked to the Variscan granite of the Ehrenfriedersdorf complex, Erzgebirge, Germany, by ion microprobe analyses has determined high concentrations of Be, up to 10,000 ppm, in one type of melt inclusion, as well as moderate concentrations in the 100 ppm range in a second type of melt inclusion. Generally, the high Be concentrations are associated with the H2O- and other volatile-rich type-B melt inclusions, and the lower Be concentration levels are connected to H2O-poor type-A melt inclusions. Both inclusion types, representing conjugate melt pairs, are formed by a liquid–liquid immiscibility separation process. This extremely strong and very systematic scattering in Be provides insights into the origin of Be concentration and transport mechanisms in pegmatite-forming melts. In this contribution, we present more than 250 new analytical data and show with ion microprobe and fs-LA-ICPMS studies on quenched glasses, as well as with confocal Raman spectroscopy of daughter minerals in unheated melt inclusions, that the concentrations of Be may achieve such extreme levels during melt–melt immiscibility of H2O-, B-, F-, P-, ± Li-enriched pegmatite-forming magmas. Starting from host granite with about 10 ppm Be, melt inclusions with 10,000 ppm Be correspond to enrichment by a factor of over 1,000. This strong enrichment of Be is the result of processes of fractional crystallization and further enrichment in melt patches of pegmatite bodies due to melt–melt immiscibility at fluid saturation. We also draw additional conclusions regarding the speciation of Be in pegmatite-forming melt systems from investigation of the Be-bearing daughter mineral phases in the most H2O-rich melt inclusions. In the case of evolved volatile and H2O-rich pegmatite systems, B, P, and carbonates are important for the enrichment and formation of stable Be complexes.  相似文献   

20.
Iron oxide–apatite deposits are present in Upper Eocene pyroxene-quartz monzonitic rocks of the Zanjan district, northwestern Iran. Mineralization occurred in five stages: (1) deposition of disseminated magnetite and apatite in the host rock; (2) mineralization of massive and banded magnetite ores in veins and stockwork associated with minor brecciation and calcic alteration of host rocks; (3) deposition of sulfide ores together with potassic alteration; (4) formation of quartz and carbonate veins and sericite, chlorite, epidote, silica, carbonate, and tourmaline alteration; and (5) supergene alteration and weathering. U–Pb dating of monazite inclusions in the apatite indicates an age of 39.99?±?0.24 Ma, which is nearly coeval with the time of emplacement of the host quartz monzonite, supporting the genetic connection. Fluid inclusions in the apatite have homogenization temperatures of about 300 °C and oxygen isotopic compositions of the magnetite support precipitation from magmatic fluids. Late-stage quartz resulted from the introduction of a cooler, less saline, and isotopically depleted fluid. The iron oxide–apatite deposits in the Tarom area of the Zanjan district are typical of a magmatic–hydrothermal origin and are similar to the Kiruna-type deposits with respect to mineral assemblages, fabric and structure of the iron ores, occurrence of the ore bodies, and wall rock alteration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号