首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
测定了四苯基卟啉锌和苯醌的四氢呋喃除氧溶液在不同温度下的光诱导电子自旋共振谱,检测到的信号在—100℃时最强,且得到的信号是由苯醌负离子质子化的自由基产生.而没有得到卟啉正离子自由基信号.在体系中加入重原子化合物碘代苯后,信号强度显著减弱,说明离子自由基的产生或卟啉和醌间的电荷转移反应主要是通过卟啉化合物的激发一重态进行的.  相似文献   

2.
测定了四苯基卟啉锌和苯醌的四氢呋喃除氧溶液在不同温度下的光诱导电子自旋共振谱,检测到的信号在—100℃时最强,且得到的信号是由苯醌负离子质子化的自由基产生.而没有得到卟啉正离子自由基信号.在体系中加入重原子化合物碘代苯后,信号强度显著减弱,说明离子自由基的产生或卟啉和醌间的电荷转移反应主要是通过卟啉化合物的激发一重态进行的.  相似文献   

3.
考察了卟啉—蒽醌化合物5-[对-(α-蒽酰亚胺)甲氧苯基]—10,15,20—三[对—甲氧苯基)卟啉P—AQ(α)和5—[对—(β—蒽醌酰亚胺)甲氧苯基]—10.15.20—三(对—甲氧苯基)卟啉P-AQ(β)在苯和二甲基甲酰胺中的电子吸收光谱和荧光发射光谱.所得结果表明:当用共价键分子链将卟啉和蒽醌连接在一起时,为它们之间的相互作用创造了更为有利的条件,但更有趣的实验发现是:P—AQ(α)和P—AQ(β)在极性溶液中的荧光猝灭特性有明显的不同.根据这一发现可以设想;连接卟啉和蒽醌基团的共价键分子链的亚单位和被它所连接的醌基的相互作用,可对卟啉和蒽醌之间的分子内电子转移过程产生一定的影响,因而设计光学作用过程中光化学过程的模型体系时,对此必须给予应有的考虑.  相似文献   

4.
在菠菜叶绿体和光系统Ⅱ颗粒中,DCIP和铁氰化钾的光还原对DCMU或Tris洗涤的抑制作用反应不同,其影响取决于pH(Tris)和浓度(DCMU)。在Tris的pH为8.0时,叶绿体和光系统Ⅱ颗粒的DCIP光还原全部被Tris(0.8M)洗涤抑制,而仍保留有少量残留的铁氰化钾光还原活力。在正常的叶绿体中,DCMU在5×10~(-5)M和5×10~(-4)M的浓度下,DCIP的光还原活力全部丧失,而铁氰化钾的光还原活力分别保留11.5%和10.8%。用Tris洗过的叶绿体,当DCIP的光还原活力被5×10~(-6)M,5×10~(-5)M和5×10~(-4)M的DCMU全部抑制时,铁氰化钾的光还原活力分别保留有对照的14.l%,15.0%和13.5%。在正常的光系统Ⅱ颗粒中,DCIP的光还原全部被5×10~(-6)M和5×10~(-5)M的DCMU抑制,而分别保留有13.8%和11.7%残留的铁氰化钾的光还原活力。用Tris(pH 7.6,0.8M)洗涤过的光系统Ⅱ颗粒,在5×10~(-7)M和5×10~(-6)M DCMU浓度下,残留的铁氰化钾光还原活力是26.2%和19.2%,而DCIP的光还原全部被抑制。 Tris洗涤过的或DCMU处理过的叶绿体和光系统Ⅱ颗粒残留的铁氰化钾光还原活力在短波光(651毫微米)下比在长波光(714毫微米)下高。讨论了光系统Ⅱ中可能包含有两个短波光反应。  相似文献   

5.
基于SVAT模型的冬小麦光合作用和蒸散过程研究   总被引:7,自引:0,他引:7  
在已建立的土壤-植被-大气传输(SVAT)模型中,冠层光合作用/气孔导度耦合子模型可区分遮荫叶和受光叶光合作用强度的差异;作物生长模型考虑了生长呼吸和维持呼吸,模拟与实测结果对比发现,日总蒸散量实测和模拟的根均方差(RMSD)为0.65mm,平均绝对差(MAPD)为14%;对冠层上部净光合作用率日变化过程而言,实测和模拟结果具有较好的一致性。利用模型模拟了冬小麦全生育争光合作用率和蒸散的演变过程。最后,分析了冬小麦蒸散和水分利用效率对不同最大叶面积指数,大气CO2浓度和叶片N含量的响应。  相似文献   

6.
蛋白核小球藻对Pb(Ⅱ)和Cd(Ⅱ)的生物吸附及其影响因素   总被引:3,自引:0,他引:3  
姜晶  李亮  李海鹏  李非里 《生态学报》2012,32(7):1995-2003
藻类吸附作用影响重金属在水生生态系统中的迁移过程及其环境行为。同时,利用藻类吸附能力是修复重金属污染水体和重金属废水处理的一项清洁、廉价和高效的技术。测定了蛋白核小球藻对Pb2+和Cd2+的吸附和脱附动力学,表明吸附是快速表面过程,吸附4 h后基本达到平衡,不易脱附。研究了蛋白核小球藻对Pb2+和Cd2+的吸附热力学,绘制了吸附等温线,并用Langmuir模型进行拟合,相关系数R2分别为0.9906和0.9827,计算得到最大吸附量分别为0.373 mmol Pb/g和0.249 mmolCd/g。考察了pH值、离子强度和温度等环境因素对蛋白核小球藻吸附Pb2+和Cd2+的影响。结果表明,蛋白核小球藻对Pb2+和Cd2+的吸附量在pH值5.0—6.0之间达到最大值,并随着溶液离子强度的增加而降低,随着溶液温度的升高而增加。温度的影响还表明,蛋白核小球藻对Pb2+和Cd2+的吸附是吸热过程。实验还考察了水体环境中普遍存在的溶解性有机质主要成分-富里酸的影响,表明富里酸会抑制蛋白核小球藻对Pb2+和Cd2+的吸附,重金属离子浓度较低时的抑制效果更明显,最大抑制率分别达到了34.2%和34.9%。由于其对重金属的较高吸附量和吸附本身快速完成的特性,蛋白核小球藻有望成为较理想的生物吸附剂,在重金属污染水体的生物修复及废水处理中发挥重要作用。  相似文献   

7.
由于光合作用原初反应研究的进展,到七十年代中期,人们对光合细菌以及高等植物的光系统Ⅰ(简写:PSⅠ),在其反应中心组成、各成员的性质以及成员之间的相互关系等方面,都有了比较清楚的了解。然而,对高等植物光系统Ⅱ(简写PSⅡ)反应中心的认识尚很缺乏。近年来,苏联的Красновский  相似文献   

8.
为了阐明血卟啉衍生物(HPD)的光敏作用机制,本文仍以北京血卟啉衍生物(BHPD)为对象,继前文(Ⅰ)观测到其光敏反应原初过程产生活性氧(~1O_2,O~(?)_2和OH)之后,又利用ESR技术,在一定条件下,观测到由活性氧向生成非氧自由基的转变过程,并且通过几种方法,都证实了非氧自由基BHPD~-阴离子的生成.这表明,BHPD的光敏作用,不仅归因于活性氧,而且还包含着非氧自由基.  相似文献   

9.
满江红(Azolla)光合作用特性的研究   总被引:2,自引:0,他引:2  
用QGD-07型红外线CO_2分析器测定了在不同生长条件下的满江红(Azolla imbricata)的光合作用特性,并与蕨状满江红(Azolla filiculoides)作了某些比较。 光合作用的光强曲线随季节而有变化。A.imbricata在春季时的光饱和点在6,000米烛光左右,夏季时上升为8,000米烛光左右;而A.filiculoides从春季时的6,000米烛光提高到夏季时的14,000米烛光。光补偿点仅在500~1000米烛光范围内稍有变化。在不同颜色的塑料薄膜复盖下,与无色膜复盖相比,紫色膜明显地促进了A.imbricata的光合作用,而黄色膜和绿色膜下稍有下降。满江红光合作用的最适温度在25~32℃,在5~45℃内都可测得净光合速率,变红植株的最适温度可扩大到18~32℃。最适pH为6.0,在pH 4.5~10.5范围内都能生长;变红植株的最适pH为5.5。加入适量的HCO_3~-对同化CO_2稍有抑制,不久后能促进同化CO_2,缩短植株加倍时间。NO_3~-对生长不良的植株能促进光合作用,但对健壮植株的效果不明显。  相似文献   

10.
赤霉素对许多植物的生长发育,具有十分显著的影响。近几年来,国内外均进行过不少的研究工作。几乎已经肯定,对于以营养体为收获物的绿叶蔬菜类作物,由于赤霉素能促进单株鲜重和干重的增加,因而具有显著的增产效果。然而,对于以籽实为收获物的禾本科作物的影响,却是比较复杂的。鉴于光合作  相似文献   

11.
目的:利用酵母双杂交系统验证在胆固醇逆转运过程中起关键作用的大鼠载脂蛋白AI(apoAI)和清道夫受体BI-(SR-BI)间存在着相互作用,为初步筛选具有降脂活性组分提供1对新的靶点。方法:首先分别克隆了Wistar大鼠的apoAI和SR-BI基因的cDNA,并构建了酵母表达载体,利用共转化技术观察到apoAI和SR-BI间存在着相互作用,并在酵母交配实验中证实了这个结果。结果:经共转化后的实验组与阳性对照组可在SD/-Leu/-Trp/-His/-Ade/X-α-Gal平板上生长且菌斑呈蓝色,经测定α、β半乳糖苷酶活力可知酶活分别为8~12U和10~40U。酵母交配后的二倍体实验组、阳性对照组可在SD/-Leu/-Trp/-His/-Ade/X-α-Gal平板上生长且菌斑呈蓝色。结论:apoAI和SRBI间的确存在相互作用。  相似文献   

12.
钙/钙调蛋白依赖的蛋白激酶Ⅱ(Ca2+/calmodulin-dependent protein kinase Ⅱ,CaMKⅡ)在脑内兴奋性突触部位丰富表达。通过催化谷氨酸受体和众多突触蛋白磷酸化,CaMKⅡ调节磷酸化蛋白在基础或细胞兴奋时的转运、分布和功能。谷氨酸NMDA受体是CaMKⅡ的直接底物,有证据表明CaMKⅡ直接与NMDA受体胞内C末端相互结合,催化一特定丝氨酸(S1303)的磷酸化。CaMKⅡ也加强谷氨酸AMPA受体的磷酸化,通过磷酸化AMPA受体C末端特定的丝氨酸(S831),CaMKⅡ增强AMPA受体的功能。此外,CaMKⅡ可与代谢型谷氨酸受体mGluR1亚型的胞内C末端结合,促进一特定苏氨酸(T871)的磷酸化,从而促进受体兴奋后脱敏。CaMKⅡ在正常状态下与mGluR5受体结合以储存于突触内,刺激mGluR5受体时,CaMKⅡ与mGluR5受体分离,转运至NMDA受体,以介导mGluR5信号对NMDA受体的增强作用。总之,CaMKⅡ与谷氨酸受体相互作用,改变受体磷酸化水平,参与受体的数量和功能以及突触传导活动的调节。  相似文献   

13.
三、推论的实验证明半导体催化电子理论能否应用于光合作用,必须“应用理论于实践,看它是否能够达到预想的目的”,因此,我们必须应用实验来肯定上述现象的存在。1.叶绿体在暗中的催化能力1965年我们以菠菜为材料,以磷酸化为指标,比较叶绿体和线粒体二者的规律变化,确定暗中形成的磷酸化是否由叶绿体所催化的。制备叶绿体用一般的常规方法,不过经 Tris 缓冲液四次洗涤,用阿诺恩(Arnon)的  相似文献   

14.
为了阐明血卟啉衍生物(HPD)的光敏作用机理,本文以我国自行研制、并已应用的第一代产品——北京血卟啉衍生物(简称BHPD)为对象,采用电子自旋共振(ESR)和自旋捕捉(Sping-Traping)等技术,从光生物物理角度,探讨了BHPD光敏反应的原初过程.结果表明,不仅观察到~1O_2的产生,而且还观测到O_2~(?)和·OH的产生.这提示,在BHPD对生物系统的光敏损伤过程中,不只是~1O_2,O_2~(?)和·OH等活性氧,很可能也起重要作用.  相似文献   

15.
锰是生物所必需的一种微量元素,但工业技术发展以及矿产资源的开发导致大量的Mn(Ⅱ)排放进入环境中对人体健康产生严重威胁.微生物修复技术可快速高效去除环境中的Mn(Ⅱ),且无二次污染,成为近年研究的热点.本文综述了除Mn(Ⅱ)微生物的种类与分布及其除Mn(Ⅱ)的机制,总结了影响微生物除Mn(Ⅱ)的因素,并展望了除锰微生物...  相似文献   

16.
光合作用是地球上绝大多数生物赖以生存的生命活动。结合于蛋白质分子上的叶绿素辅基在受到光照时会射出电子,将结合于同一蛋白上的醌分子还原成为氢醌。氢醌分子中的高能电子再流过一条位于生物膜上的"电子传递链",其间释放的能量则被用于将氢离子从生物膜的一侧转移至另一侧,形成跨膜氢离子梯度。氢离子从膜的一侧流回另一侧时,就可驱动位于膜上的酶合成高能化合物三磷酸腺苷(ATP),为各种生命活动提供能量。叶绿素辅基射出的电子还可变为还原力强的氢原子,为细胞合成有机物所用。光合作用的过程虽然非常复杂,但其中的基本机制和成分早就在细菌中发展出来了。叶绿素可能是从合成血红素的化学反应链演变而来;进行光反应的蛋白,很可能是从原来电子传递链中直接与醌分子作用的细胞色素b变化而来;而光系统Ⅰ又从光系统Ⅱ演化而来。光合作用出现的时间非常早,发生在原核生物中的细菌与古菌分化之后的细菌中,又发生在细菌大规模分化之前,其间细菌之间的横向基因转移起了重要作用。从分子角度介绍光合作用中光反应的机制及其形成的过程。  相似文献   

17.
光合作用是地球上绝大多数生物赖以生存的生命活动。结合于蛋白质分子上的叶绿素辅基在受到光照时会射出电子,将结合于同一蛋白上的醌分子还原成为氢醌。氢醌分子中的高能电子再流过一条位于生物膜上的"电子传递链",其间释放的能量则被用于将氢离子从生物膜的一侧转移至另一侧,形成跨膜氢离子梯度。氢离子从膜的一侧流回另一侧时,就可驱动位于膜上的酶合成高能化合物三磷酸腺苷(ATP),为各种生命活动提供能量。叶绿素辅基射出的电子还可变为还原力强的氢原子,为细胞合成有机物所用。光合作用的过程虽然非常复杂,但其中的基本机制和成分早就在细菌中发展出来了。叶绿素可能是从合成血红素的化学反应链演变而来;进行光反应的蛋白,很可能是从原来电子传递链中直接与醌分子作用的细胞色素b变化而来;而光系统Ⅰ又从光系统Ⅱ演化而来。光合作用出现的时间非常早,发生在原核生物中的细菌与古菌分化之后的细菌中,又发生在细菌大规模分化之前,其间细菌之间的横向基因转移起了重要作用。从分子角度介绍光合作用中光反应的机制及其形成的过程。  相似文献   

18.
光合作用是地球上绝大多数生物赖以生存的生命活动。结合于蛋白质分子上的叶绿素辅基在受到光照时会射出电子,将结合于同一蛋白上的醌分子还原成为氢醌。氢醌分子中的高能电子再流过一条位于生物膜上的"电子传递链",其间释放的能量则被用于将氢离子从生物膜的一侧转移至另一侧,形成跨膜氢离子梯度。氢离子从膜的一侧流回另一侧时,就可驱动位于膜上的酶合成高能化合物三磷酸腺苷(ATP),为各种生命活动提供能量。叶绿素辅基射出的电子还可变为还原力强的氢原子,为细胞合成有机物所用。光合作用的过程虽然非常复杂,但其中的基本机制和成分早就在细菌中发展出来了。叶绿素可能是从合成血红素的化学反应链演变而来;进行光反应的蛋白,很可能是从原来电子传递链中直接与醌分子作用的细胞色素b变化而来;而光系统Ⅰ又从光系统Ⅱ演化而来。光合作用出现的时间非常早,发生在原核生物中的细菌与古菌分化之后的细菌中,又发生在细菌大规模分化之前,其间细菌之间的横向基因转移起了重要作用。本文从分子角度介绍光合作用中光反应的机制及其形成的过程。  相似文献   

19.
光合作用是地球上绝大多数生物赖以生存的生命活动。结合于蛋白质分子上的叶绿素辅基在受到光照时会射出电子,将结合于同一蛋白上的醌分子还原成为氢醌。氢醌分子中的高能电子再流过一条位于生物膜上的"电子传递链",其间释放的能量则被用于将氢离子从生物膜的一侧转移至另一侧,形成跨膜氢离子梯度。氢离子从膜的一侧流回另一侧时,就可驱动位于膜上的酶合成高能化合物三磷酸腺苷(ATP),为各种生命活动提供能量。叶绿素辅基射出的电子还可变为还原力强的氢原子,为细胞合成有机物所用。光合作用的过程虽然非常复杂,但其中的基本机制和成分早就在细菌中发展出来了。叶绿素可能是从合成血红素的化学反应链演变而来;进行光反应的蛋白,很可能是从原来电子传递链中直接与醌分子作用的细胞色素b变化而来;而光系统Ⅰ又从光系统Ⅱ演化而来。光合作用出现的时间非常早,发生在原核生物中的细菌与古菌分化之后的细菌中,又发生在细菌大规模分化之前,其间细菌之间的横向基因转移起了重要作用。从分子角度介绍光合作用中光反应的机制及其形成的过程。  相似文献   

20.
光合作用是地球上绝大多数生物赖以生存的生命活动。结合于蛋白质分子上的叶绿素辅基在受到光照时会射出电子,将结合于同一蛋白上的醌分子还原成为氢醌。氢醌分子中的高能电子再流过一条位于生物膜上的"电子传递链",其间释放的能量则被用于将氢离子从生物膜的一侧转移至另一侧,形成跨膜氢离子梯度。氢离子从膜的一侧流回另一侧时,就可驱动位于膜上的酶合成高能化合物三磷酸腺苷(ATP),为各种生命活动提供能量。叶绿素辅基射出的电子还可变为还原力强的氢原子,为细胞合成有机物所用。光合作用的过程虽然非常复杂,但其中的基本机制和成分早就在细菌中发展出来了。叶绿素可能是从合成血红素的化学反应链演变而来;进行光反应的蛋白,很可能是从原来电子传递链中直接与醌分子作用的细胞色素b变化而来;而光系统Ⅰ又从光系统Ⅱ演化而来。光合作用出现的时间非常早,发生在原核生物中的细菌与古菌分化之后的细菌中,又发生在细菌大规模分化之前,其间细菌之间的横向基因转移起了重要作用。本文从分子角度介绍光合作用中光反应的机制及其形成的过程。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号