首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The energy savings of a building roof integrated with a phase change material (PCM) and different insulation strategies are presented in this paper. The proposed roof structure includes a concrete slab with a PCM layer and an air cavity insulation, which can be adjusted according to certain strategies. The adjustable insulation is devised to enable a reduced total heat gain throughout 24 h in summer days, thereby improving the performance of the PCM. The heat gain/loss through the roof with the PCM layer and adjustable insulation is compared with that of the roof with the PCM layer and fixed insulation during a typical year in Hangzhou, China. The effects and optimization of the melting temperature of the PCM are also explored. The simulation results show that, overall, the adjustable insulation can reduce the daily heat flux through the roof by approximately 20% compared with the conventional fixed insulation.  相似文献   

2.
The idea of combining photovoltaic and solar thermal collectors (PVT collectors) to provide electrical and heat energy is an area that has, until recently, received only limited attention. Although PVTs are not as prevalent as solar thermal systems, the integration of photovoltaic and solar thermal collectors into the walls or roofing structure of a building could provide greater opportunity for the use of renewable solar energy technologies. In this study, the design of a novel building integrated photovoltaic/thermal (BIPVT) solar collector was theoretically analysed through the use of a modified Hottel-Whillier model and was validated with experimental data from testing on a prototype BIPVT collector.The results showed that key design parameters such as the fin efficiency, the thermal conductivity between the PV cells and their supporting structure, and the lamination method had a significant influence on both the electrical and thermal efficiency of the BIPVT. Furthermore, it was shown that the BIPVT could be made of lower cost materials, such as pre-coated colour steel, without significant decreases in efficiency.Finally, it was shown that by integrating the BIPVT into the building rather than onto the building could result in a lower cost system. This was illustrated by the finding that insulating the rear of the BIPVT may be unnecessary when it is integrated into a roof above an enclosed air filled attic, as this air space acts as a passive insulating barrier.  相似文献   

3.
Elevated operating temperatures reduce the solar to electrical conversion efficiency of building integrated photovoltaic devices (BIPV). Phase change materials (PCM) can be used to passively limit this temperature rise although their effectiveness is limited by their low thermal conductivities and crystallisation segregation during solidification. This paper presents an experimental evaluation of the effects of convection and crystalline segregation in a PCM as a function of efficiency of heat transfer within the finned PV/PCM system. The thermal performances of bulk PCM with crystallisation segregation for different internal fin arrangements are presented. It is noted that the addition of internal fins improves the temperature control of the PV in a PV/PCM system.  相似文献   

4.
W. Saman  F. Bruno  E. Halawa 《Solar Energy》2005,78(2):341-349
The thermal performance of a phase change thermal storage unit is analysed and discussed. The storage unit is a component of a roof integrated solar heating system being developed for space heating of a home. The unit consists of several layers of phase change material (PCM) slabs with a melting temperature of 29 °C. Warm air delivered by a roof integrated collector is passed through the spaces between the PCM layers to charge the storage unit. The stored heat is utilised to heat ambient air before being admitted to a living space. The study is based on both experimental results and a theoretical two dimensional mathematical model of the PCM employed to analyse the transient thermal behaviour of the storage unit during the charge and discharge periods. The analysis takes into account the effects of sensible heat which exists when the initial temperature of the PCM is well below or above the melting point during melting or freezing. The significance of natural convection occurring inside the PCM on the heat transfer rate during melting which was previously suspected as the cause of faster melting process in one of the experiments is discussed. The results are compared with a previous analysis based on a one dimensional model which neglected the effect of sensible heat. A comparison with experimental results for a specific geometry is also made.  相似文献   

5.
Both cool roof and phase change thermal storage are promising technologies in decreasing building energy consumption. Combining these two technologies is likely to further enhance the thermal comfort of the building as well as reduce air condition loads. In this paper, the cooling performance and energy-saving effects of four types of roof (normal roof, phase change material [PCM] roof, cool roof, and cool PCM roof [cool roof coupled with PCM]) were investigated under a simulated sunlight. Experimental results indicate that compared with normal roof, the other three roofs are able to narrow the indoor temperature fluctuation and decrease the heat flow entering into the room. Among them, cool PCM roof gave the best energy-saving effect that can lower the indoor temperature and heat entering into rooms by 6.6°C and 52.9%, respectively. Besides, the PCM location, PCM thickness, and insulation thickness exerted great impacts on the cooling performance of the roof. Placing the PCM on the internal layer beneath the extruded polystyrene (XPS) insulation board can make the indoor temperature 1.2°C lower than that on the middle layer. Although thicker PCM panels or insulation boards can provide a better thermal insulation, 5 mm in PCM thickness and 20 mm in insulation thickness are enough to guarantee the indoor temperature of cool PCM roof system at a comfortable range (22°C-28°C) for a whole day. These findings will give guidance in designing buildings with a light and compact roof structure to decrease energy consumption and improve comfort level.  相似文献   

6.
The authors have developed experimental thermal-photovoltaic (PV) hybrid exterior wallboards that incorporate of PV cells. The clapboard-shaped hybrid wallboards permit modular assembly that can be more easily adapted for building applications than previous PV systems. Solar heat is collected in the form of heated air circulating in the air gap between the hybrid wallboard and the thermal insulation of the exterior walls. This paper presents an evaluation of both the electrical power generating ability and the solar heat collection capacity during winter of six variations of the experimental thermal-PV hybrid wallboard. In addition, exergy analyses were conducted.  相似文献   

7.
针对光伏相变(PV-PCM)热管理系统建立数值模型,与实验结果对比验证模型的有效性。在此基础上,研究24 h内不同复合PCM物性参数(相变温度、膨胀石墨质量分数和厚度)对太阳电池温度的变化规律,利用正交实验法和直观分析法研究最高温度、高于45 ℃与41 ℃的时长和入夜后低于35 ℃的时长的影响。进一步模拟不同类型和数量的散热翅片对太阳电池工作温度的影响,优化PV-PCM系统的散热结构。研究显示,使用内向翅片的散热结构和相变温度为40.2 ℃、膨胀石墨质量分数为15%、厚度为40 mm的复合PCM,可使太阳电池的最高工作温度最小,其值约为42 ℃。  相似文献   

8.
The article presents how to increase electrical efficiency and power output of photovoltaic (PV) panel with the use of a phase change material (PCM). The focus of the work is in experimental setup and simulation heat extraction from the PV panel with the use of TRNSYS software. A modification of PV panel Canadian Solar CS6P-M was made with a phase change material RT28HC. The actual data of cell temperature of a PV panel with and without PCM were given and compared. A simulation of both PV panels in TRNSYS software was performed, followed by the comparison of results with the simulation and experimental actual data. The experimental results show that the maximum temperature difference on the surface of PV panel without PCM was 35.6 °C higher than on a panel with PCM in a period of one day. Referring to experimental results the calculation of the maximum and average increase of electrical efficiency was made for PV-PCM panel with TRNSYS software. Final results of simulation shows that the electricity production of PV-PCM panel for a city of Ljubljana was higher for 7.3% in a period of one year.  相似文献   

9.
Heat gain reduction by means of thermoelectric roof solar collector   总被引:1,自引:0,他引:1  
This paper presents a numerical investigation on attic heat gain reduction by using thermoelectric modules integrated in a conventional roof solar collector (RSC). This system, called thermoelectric roof solar collector (TE-RSC), is composed of a transparent glass, air gap, a copper plate, thermoelectric modules (TE) and rectangular fin heat sink. Due to the incident solar radiation, a temperature difference is created between the hot and cold sides of TE modules that generates a direct current. This current is used to drive a ventilating fan for cooling the TE-RSC and enhancing attic ventilation that reduces ceiling heat gain. The system performance was simulated using TRNSYS program with new TE and DC fan components developed by our team and compared to a common house.Simulation results using real house configuration showed that a TE-RSC unit of 0.0525 m2 surface area can generate about 9 W under 972 W/m2 global solar radiation and 35 °C ambient temperature. The induced air change varied between 20 and 40 and the corresponding ceiling heat transfer rate reduction is about 3–5 W/m2. The annual electrical energy saving was about 362 kWh. Finally, economical calculations indicated that the payback period of the TE-RSC is 4.36 years and the internal rate of return is 22.05%.  相似文献   

10.
Effects of solar photovoltaic panels on roof heat transfer   总被引:1,自引:0,他引:1  
Indirect benefits of rooftop photovoltaic (PV) systems for building insulation are quantified through measurements and modeling. Measurements of the thermal conditions throughout a roof profile on a building partially covered by solar photovoltaic (PV) panels were conducted in San Diego, California. Thermal infrared imagery on a clear April day demonstrated that daytime ceiling temperatures under the PV arrays were up to 2.5 K cooler than under the exposed roof. Heat flux modeling showed a significant reduction in daytime roof heat flux under the PV array. At night the conditions reversed and the ceiling under the PV arrays was warmer than for the exposed roof indicating insulating properties of PV. Simulations showed no benefit (but also no disadvantage) of the PV covered roof for the annual heating load, but a 5.9 kWh m−2 (or 38%) reduction in annual cooling load. The reduced daily variability in rooftop surface temperature under the PV array reduces thermal stresses on the roof and leads to energy savings and/or human comfort benefits especially for rooftop PV on older warehouse buildings.  相似文献   

11.
A model for building integrated photovoltaic systems has been developed and implemented in a dynamic simulation tool. This tool takes into account the thermal interactions between the PV collector and the building. The influence of the type of integration upon the PV collector efficiency has been evaluated and hybrid PV/air collectors have been studied. An overall efficiency is defined, including the production of electricity and heat. A case study has been performed on two different typical buildings. In the case of a multi-crystalline silicon PV collector integrated on the roof of a single family house located in Paris, the efficiency of unventilated PV modules fixed on the roof is 14%. If the PV collector is used to preheat the ventilation air, the efficiency reaches 20%. A proper building integration also improves the environmental balance of PV technologies over their life cycle.  相似文献   

12.
通过在太阳能集热器中添加饱和式脂肪酸相变材料,对太阳能光伏光热系统的不同热调控策略开展了实验研究。分析集热器中通水和不通水两种热调控策略对系统能量利用的影响。结果表明:相变材料可有效降低光伏板温度,但两种热调控策略下相变材料存在明显的温度分层现象;与不通水策略相比,通水策略在强化系统换热的同时促进了更多余热的回收,不通水和通水策略的热效率分别为71.3%和77.1%;通水策略可以更加有效地降低光伏板温度,缓解相变材料过热的影响,光电转化效率提高了7.3%。  相似文献   

13.
The thermal and optical performances of a roof in a building containing phase change material (PCM) were investigated in this paper. The glazing roof model consists of two layers of glass and one layer of PCM. The purpose of filling the roof structure with PCM is to utilize the solar energy efficiently. The effectiveness of thermal and optical performances of the roof PCM system was determined by analyzing the heat flux and temperature at the indoor surface with different absorption coefficients and refractive index of PCM in solid and liquid states. The results show that the absorption coefficients and refractive index of solid and liquid PCMs have both effects on thermal performance in the roof PCM system. Of all the thermal performances, the effect on internal temperature, temperature lag, and total transmitted energy is smaller and the effect on solar transmittance and transmitted solar energy is bigger. The absorption coefficients have the opposite effect with the refractive index on interior temperature lag. Considering the indoor daylight, increasing the refractive index and absorption coefficient of liquid PCM is a better method to better the thermal performance of a roof PCM system. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

14.
为充分利用建筑屋顶,解决光伏光热一体化(PV/T)集热器光电转换效率的高温减益问题,并提高太阳能综合利用率和集热品位,文章构建了一种基于太阳光谱分频利用技术的光伏/光热模块分离式的小型聚光式PV/T集热器。通过建立其光/电/热理论分析模型及TracePro/Fluent数值仿真模型,以南京地区气象数据为例,综合分析其光/电/热性能,结果表明:该集热器以与安装地纬度等值的倾角南北轴向放置时,其年均光学效率为64.97%,工质出口温度为90℃时的系统光电/光热效率分别为12.47%,40.09%,系统综合热效率达72.91%,且其结构简单、外形轻薄,有望实现与普通建筑的有效结合。  相似文献   

15.
Building Integrated Photovoltaics (BIPVs) is one of the most promising applications for Photovoltaics (PVs). However, when the temperature in the BIPV increases, the conversion efficiency deteriorates. A PV/PCM system using Phase Change Materials (PCM) for BIPV thermal control has been experimentally and numerically studied previously. One of the main barriers for this application is how to improve the low thermal conductivity of the PCM in order to achieve a quick thermal dissipation response with longer thermal regulation in PVs. Although the metal fins inserted inside the PCM can improve the heat transfer, the thermal regulation period declines as the volume of the PCM is substituted by the metal mass of the PV/PCM system. A modified PV/PCM system integrated with two PCMs with different phase transient temperatures for improving the heat regulation needs to be investigated. The use of combinations of PCMs, each with a set of different phase transient temperatures, is expected to enhance the thermal regulation effect of the PV/PCM system and lengthen the thermal regulation time in PVs. In this study a developed PV/PCM numerical simulation model for single PCM application has been modified to predict the thermal performance of the multi-PCMs in a triangular cell in the PV/PCM system. A series of numerical simulations tests have been carried out in static state and realistic conditions in UK. The thermal regulation of the PV/PCM system with a different range of phase transient temperature PCMs has been discussed.  相似文献   

16.
Y. Tripanagnostopoulos   《Solar Energy》2007,81(9):1117-1131
Hybrid photovoltaic/thermal (PV/T or PVT) solar systems consist of PV modules coupled to water or air heat extraction devices, which convert the absorbed solar radiation into electricity and heat. At the University of Patras, an extended research on PV/T systems has been performed aiming at the study of several modifications for system performance improvement. In this paper a new type of PV/T collector with dual heat extraction operation, either with water or with air circulation is presented. This system is simple and suitable for building integration, providing hot water or air depending on the season and the thermal needs of the building. Experiments with dual type PV/T models of alternative arrangement of the water and the air heat exchanging elements were performed. The most effective design was further studied, applying to it low cost modifications for the air heat extraction improvement. These modifications include a thin metallic sheet placed in the middle of the air channel, the mounting of fins on the opposite wall to PV rear surface of the air channel and the placement of the sheet combined with small ribs on the opposite air channel wall. The modified dual PV/T collectors were combined with booster diffuse reflectors, achieving a significant increase in system thermal and electrical energy output. The improved PV/T systems have aesthetic and energy advantages and could be used instead of separate installation of plain PV modules and thermal collectors, mainly if the available building surface is limited and the thermal needs are associated with low temperature water or air heating.  相似文献   

17.
Building integrated photovoltaics (BIPV) has the potential to become a major source of renewable energy in the urban environment. BIPV has significant influence on the heat transfer through the building envelope because of the change of the thermal resistance by adding or replacing the building elements. Four different roofs are used to assess the impacts of BIPV on the building’s heating-and-cooling loads; namely ventilated air-gap BIPV, non-ventilated (closed) air-gap BIPV, closeroof mounted BIPV, and the conventional roof with no PV and no air gap. One-dimensional transient models of four cases are derived to evaluate the PV performances and building cooling-and-heating loads across the different roofs in order to select the appropriate PV building integration method in Tianjin, China. The simulation results show that the PV roof with ventilated air-gap is suitable for the application in summer because this integration leads to the low cooling load and high PV conversion efficiency. The PV roof with ventilation air-gap has a high time lag and small decrement factor in comparison with other three roofs and has the same heat gain as the cool roof of absorptance 0.4. In winter, BIPV of non-ventilated air gap is more appropriate due to the combination of the low heating-load through the PV roof and high PV electrical output.  相似文献   

18.
太阳能光伏光热建筑一体化系统的研究   总被引:1,自引:0,他引:1  
太阳能光伏光热一体化不仅能够有效降低光伏组件的温度,提高光伏发电效率,而且能够产生热能,从而大大提高了太阳能的转换效率。对光伏光热建筑一体化(BIPV/T)系统的两种主要模式:水冷却型和空气冷却型系统的工作原理和系统模型进行了理论介绍,详细说明了两种系统中热产品在家庭中的应用。并对目前研究情况下两个系统中存在的问题提出了改进方案。与常规建筑相比,光伏光热建筑减少了墙体得热,改善了室内空调负荷状况,提高了建筑节能效果。  相似文献   

19.
The continuous increase in the level of greenhouse gas emissions and the rise in fuel prices are the main driving forces behind the efforts for more effectively utilize various sources of renewable energy. In many parts of the world, direct solar radiation is considered to be one of the most prospective sources of energy. In this study, the thermal performance of a phase change thermal storage unit is analyzed and discussed. The storage unit is a component of ten pieced solar air collectors heating system being developed for space heating of a greenhouse and charging of PCM. CaCl26H2O was used as PCM in thermal energy storage with a melting temperature of 29 °C. Hot air delivered by ten pieced solar air collector is passed through the PCM to charge the storage unit. The stored heat is utilized to heat ambient air before being admitted to a greenhouse. This study is based on experimental results of the PCM employed to analyze the transient thermal behavior of the storage unit during the charge and discharge periods. The proposed size of collectors integrated PCM provided about 18–23% of total daily thermal energy requirements of the greenhouse for 3–4 h, in comparison with the conventional heating device.  相似文献   

20.
In this technical article, a novel experimental setup is designed and proposed to produce a hydrogen by using solar energy. This system comprises a hybrid or photovoltaic Thermal (PVT) solar collector, Hoffman's voltameter, heat exchanger unit and Phase Change Material (PCM). The effect of PCM and mass flow rate of water on the hybrid solar collector efficiency and hydrogen yield rate is studied. This experimental results clearly showed that by adding the thermal collector with water, decreases PV module temperature by 20.5% compared with conventional PV module. Based on the measured values, at 12.00 and 0.011 kg/s mass flow rate, about 33.8% of thermal efficiency is obtained for water based hybrid solar collector. Similarly, by adding Paraffin PCM to the water based thermal collector, the maximum electrical efficiency of 9.1% is achieved. From this study, the average value of 17.12% and 18.61% hydrogen yield rate is attained for PVT/water and PVT/water with PCM systems respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号