首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Corrugated plate heat exchangers have larger heat transfer surface area and increased turbulence level due to the corrugations. In this study, experimental heat transfer data are obtained for single phase flow (water-to-water) configurations in a commercial plate heat exchanger for symmetric 30°/30°, 60°/60°, and mixed 30°/60° chevron angle plates. Experiments were carried out for Reynolds number ranging from 500 to 2500 and Prandtl number from 3.5 to 6.5. Experimental results show significant effect of chevron angle and Reynolds number on the heat transfer coefficient. Based on the experimental data, a correlation to estimate Nusselt number as a function of Reynolds number, Prandtl number and chevron angle has been proposed.  相似文献   

2.
The air inlet flow direction is not orthogonal to the heat exchanger surface in many cases. To study the performance of the heat transfer and pressure drop of a heat exchanger with different air inlet angles, this paper shows the experimental system about a finned oval-tube heat exchanger inclined toward the air incoming flow direction. The heat transfer and pressure drop characteristics of four air inlet angles (90°, 60°, 45°, and 30°) are studied separately for the Reynolds number ranging from 1300 to 13000 in this study. The experimental correlations of Nusselt number and resistance coefficient of the air side are acquired. The results show that the overall heat transfer coefficients become smaller and smaller with the decrease of the air inlet angles, while the pressure drops have significant changes. The heat transfer performances of the heat exchanger under the three inclined air inlet angles are worse than that at 90°. Among the three inclined angles, the performance at 45° is the best under identical mass flow rate criterion and at low Reynolds number under identical pressure drop criterion; that at 60° is the best at large Reynolds under identical pressure drop criterion. Finally, some conclusions are attained about the effects of the air inlet angles on the heat transfer and pressure drop performance of the finned oval-tube heat exchanger.  相似文献   

3.
This experiment was carried out using delta winglet arrays of vortex generators (VG) with inline arrangement in a tube heat exchanger to study enhanced heat transfer and flow behaviour. The experiment was conducted for the turbulent flow (Re = 6000 to 27000). In this experiment, different parameters, pitch ratios (PR = 1.6, 2.4, and 4.8), lengths (L = 10, 15, and 20 mm), and attack angles (B = 0°, 10°, 20°, 30°, and 45°) were studied and then their effect on thermal performance was observed. Results indicate that the PR affected f and Nu significantly. For PR = 1.6, VGs showed the highest f and Nu for all of the cases. Vortex generators with L10 B45 PR4.8 achieved the best TPE with 1.23 at Re = 6000. Attack angle B indicated a significant impact on thermal performance and 45 degree showed the TPE of 1.23 at lower Re. Oil film flow and smoke flow visualization were employed to identify the flow vortices and understand flow mechanism. The oil film flow and smoke flow visualization clearly traced longitudinal vortex, and induced vortex, which induced impingement flow and recirculation zone that lead to significant heat transfer enhancement.  相似文献   

4.
The present numerical analysis pertains to the heat transfer enhancement in a plate‐fin heat exchanger employing triangular shaped fins with a rectangular wing vortex generator on its slant surfaces. The study has been carried out for three different angles of attack of the wing, i.e., 15°, 20° and 26°. The aspect ratio of the wing is not varied with its angle of attack. The flow considered herein is laminar, incompressible, and viscous with the Reynolds number not exceeding 200. The pressure and the velocity components are obtained by solving the continuity and the Navier– Stokes equations by the Marker and Cell method. The present analysis reveals that the use of a rectangular wing vortex generator at an attack angle of 26° results in about a 35% increase in the combined spanwise average Nusselt number as compared to the plate‐triangular fin heat exchanger without any vortex generator. © 2010 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20285  相似文献   

5.
This study presents, a numerical investigation of two‐dimensional turbulent nanofluids flow in different ribs tube configurations on heat transfer, friction, and thermal performance coefficients using ANSYS‐FLUENT software version‐16. Governing equations of mass, momentum, and energy have been solved by means of a finite volume method (FVM). Four types of nanoparticles namely; Al2O3, CuO, SiO2, and ZnO with volume fraction range (1%‐4%) and different size of nanoparticles (dp = 30 nm, 40 nm, 50 nm, and 60 nm) with various Reynolds number (10 000‐30 000) in a constant heat flux tube with rectangular, triangular, and trapezoidal ribs were conducted for simulation. The results exhibit that Nusselt number for all cases enhanced with Reynolds number and nanofluid volume fraction increases. Likewise, the results also reveal that SiO2 with volume fractions of 4% and diameters of nanoparticles of 30 nm in triangular ribs offered the highest Nusselt number at Reynolds number of Re = 30 000. In addition, the higher value of thermal performance factor was obtained at Reynolds number of Re = 10 000.  相似文献   

6.
Three-dimensional numerical simulations were performed for laminar flow of wavy fin-and-tube heat exchangers by using body-fitted coordinates (BFC) method with fin efficiency effect accounted. The prediction results of average Nusselt number, friction factor and fin efficiency were compared with the related experimental correlations [R.C. Xin, H.Z. Li, H.J. Kang, W. Li, W.Q. Tao, An experimental investigation on heat transfer and pressure drop characteristics of triangular wavy fin-and-tube heat exchanger surfaces, J. Xi'an Jiaotong Univ. 28 (2) (1994) 77–83] and Schmidt approximation [T.E. Schmidt, Heat transfer calculations for extended surfaces, Refrigerating Engineering (April 1949) 351–357]. For Reynolds numbers based on the tube outside diameter ranging from 500 to 4000, the mean deviation is 3.3% for Nusselt number, 1.9% for friction factor and 3.6% for fin efficiency. The distributions of local Nusselt number and fin efficiency on fin surface were studied at wavy angle equal to 0° (plain plate fin), 10° and 20° respectively. The local Nusselt number decreases along the air flow direction, but fin efficiency increases in general. The wavy angle can greatly affect the distributions of local Nusselt number and fin efficiency, and make the distributions present fluctuation along the flow direction. The result also shows that the fin efficiency at the inlet region of wavy fin is larger than that of plain plate fin at the same region. With the increase of Reynolds number, the effects of wavy angle on the distributions of local Nusselt number and fin efficiency are more and more significant.  相似文献   

7.
Predictions are reported for laminar mixed convection using various types of nanofluids over a horizontal backward‐facing step in a duct, in which the upstream wall and the step are considered adiabatic surfaces, while the downstream wall from the step is heated to a uniform temperature that is higher than the inlet fluid temperature. The straight wall that forms the other side of the duct is maintained at constant temperature equivalent to the inlet fluid temperature. Eight different types of nanoparticles, Au, Ag, Al2O3, Cu, CuO, diamond, SiO2, and TiO2, with 5% volume fraction are used. The conservation equations along with the boundary conditions are solved using the finite volume method. Results presented in this paper are for a step height of 4.9 mm and an expansion ratio of 1.942, while the total length in the downstream of the step is 0.5 m. The Reynolds number is in the range of 75 ≤ Re ≤ 225. The downstream wall was fixed at a uniform wall temperature in the range of 0 ≤ ΔT ≤ 30 °C which is higher than the inlet flow temperature. Results reveal that there is a primary recirculation region for all nanofluids behind the step. It is noticed that nanofluids without secondary recirculation region have a higher Nusselt number and it increases with Prandtl number decrement. On the other hand, nanofluids with secondary recirculation regions are found to have a lower Nusselt number. Diamond nanofluid has the highest Nusselt number in the primary recirculation region, while SiO2 nanofluid has the highest Nusselt number downstream of the primary recirculation region. The skin friction coefficient increases as the temperature difference increases and the Reynolds number decreases. © 2011 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.20344  相似文献   

8.
Heat transfer between two immiscible liquid phases in turbulent flow is of great interest in improving the residence time, compactness, and energy cost of cooling and heating processes. The high-efficiency vortex (HEV) device used here as a direct-contact heat exchanger (DCHE) is a generic multifunctional exchanger/reactor in which wall tabs generate longitudinal vortices responsible for convective radial transfer that enhance macro-mixing, phase dispersion and fast temperature homogenization in the flow.The experiments reported here concern a continuous flow of water in which an immiscible mineral oil is injected. The inlet water temperature ranges from 11 to 13 °C, and the inlet oil temperature from 40 to 48 °C; the flow Reynolds number varies between 7500 and 15 000. An algebraic one-dimensional thermal model accounting for the axial evolution of the phase temperatures coupled with drop breakup is developed and validated by the experimental thermal results in the DCHE. This model requires knowledge of the turbulent field in single-phase conditions; it can be adapted to other flow geometries and can be used as a sizing tool for engineering design.Despite the phase separation at the outlet, the DCHE is more efficient than a double-jacketed heat exchanger in terms of global Nusselt number. In addition, the HEV heat exchanger is energetically less costly than the other DCHE for the same heat-transfer capacity.  相似文献   

9.
Three-dimensional numerical study was performed for heat transfer characteristics and fluid flow structure of fin-and-oval-tube heat exchangers with longitudinal vortex generators (LVGs). For Re (based on the hydraulic diameter) ranges from 500 to 2500, it was found that the average Nu for the three-row fin-and-oval-tube heat exchanger with longitudinal vortex generators increased by 13.6–32.9% over the baseline case and the corresponding pressure loss increased by 29.2–40.6%. The results were analyzed on the basis of the field synergy principle to provide fundamental understanding of the relation between local flow structure and heat transfer augmentation. It was confirmed that the reduction of the intersection angle θ between the velocity field and the temperature field was one of the essential factors influencing heat transfer enhancement. Three geometrical parameters – placement of LVGs (upstream and downstream), angles of attack (α = 15°, 30°, 45° and 60°) and tube-row number (n = 2, 3, 4 and 5) – were also investigated for parameter optimization. The LVGs with placement of downstream, angles of attack α = 30° and minimum tube-row number provide the best heat transfer performance. The effects of the three geometrical parameters on heat transfer enhancement were also analyzed from the view point of the field synergy principle and it was found that the results can be well explained by the field synergy principle.  相似文献   

10.
This article presents a parametric study on flow behavior and heat transfer in an inclined triangular cavity subjected to a moving lid and temperature differential. The systematic study considers three physical parameters (inclination angle, Reynolds number, and Grashof number) and explores the influence of these parameters on flow pattern and heat transfer characteristics. A series of computations were performed for the inclination angle (θ) ranging from 0° to 360° (in increments of 45°), Reynolds number (Re) from 100 to 1,500, and Grashof number (Gr) from 105 to 107. The numerical results show that there are three kinds of flow regime in a triangular cavity inclined from 0° to 360°: buoyancy-dominant, inertia-dominant, and intermediate transition (mixed convection flow). It is interesting that the case with Re = 100, Gr = 107, and θ = 0° exhibits five circulation cells and induces excellent thermal performance, corresponding to wavy profiles in local Nusselt number and local friction factor. The study also reveals that the good thermal performance within a local region can generate higher friction force on the neighboring boundary and this friction force may reduce the strength of the vortex.  相似文献   

11.
The effect of the flow geometry parameters on transient forced convection heat transfer for turbulent flow in a circular tube with baffle inserts has been investigated. The characteristic parameters of the tubes are pitch to tube inlet diameter ratio H/D = 1, 2 and 3, baffle orientation angle β = 45°, 90° and 180°. Air, Prandtl number of which is 0.71, was used as working fluid, while stainless steel was considered as pipe and baffle material. During the experiments, different geometrical parameters such as the baffle spacing H and the baffle orientation angle β were varied. Totally, nine types of baffle inserted tube were used. The general empirical equations of time averaged Nusselt number and time averaged pressure drop were derived as a function of Reynolds number corresponding to the baffle geometry parameters of pitch to diameter ratio H/D, baffle orientation angle β, ratio of smooth to baffled cross-section area So/Sa and ratio of tube length to baffle spacing L/H were derived for transient flow conditions. The proposed empirical correlations were considered to be applicable within the range of Reynolds number 3000  Re  20,000 for the case of constant heat flux.  相似文献   

12.
Natural convection in a triangular cavity filled with air is investigated numerically. In this paper, the cavity is exposed to air stream cooling exerted on its sides and it is heated by a fixed heat flux from the base. The air inside the cavity is assumed to be laminar and obeying Boussinesq approximation. The governing equations are solved numerically using the finite volume technique with SIMPLE algorithm. The results are achieved with a range of Rayleigh number (104 < Ra < 107), free stream Reynolds number (103 < Re < 1.5 × 104), four aspect ratios (AR = 0.25, 0.5, 0.866, and 1) and five inclination angles (? = 0°, 30°, 45°, 60°, 90°). The influence of these parameters is displayed on the stream function, isotherms lines, local and average Nusselt numbers. The results reveal that the heat transfer rate increases as Rayleigh number, free stream Reynolds number and AR increase. The highest heat transfer rate is obtained at ? = 0° while the lowest one is obtained at ? = 90°. Furthermore, as the AR augments, the local and average Nusselt numbers are enhanced and the stream function is formed of two symmetric counter‐rotating vortices.  相似文献   

13.
Experiments have been performed to determine mixed convection flow and heat transfer in a horizontal, concentric tube annulus for Reynolds numbers in the range 2200 < Re < 5000. Within this range, flow conditions are turbulent and laminar, respectively, in regions of the annulus above and below the heated inner tube. For Reynolds numbers less than a critical value Re1 which depends on the Rayleigh number, diameter ratio and longitudinal position, flow along the sides of the annulus is laminar and helicoidal. For Re >Re1, there is a breakdown in the helicoidal motion, with subsequent transition to turbulence in the top and side regions of the annular passage. The local Nusselt number at the top of the inner tube is less than, equal to, and greater than that at the bottom for Re < Re1, Re = Re1, and Re >Re1, respectively. The circumferentially averaged Nusselt number is weakly dependent on longitudinal position and may be correlated in terms of the Rayleigh and Reynolds numbers and the tube diameter ratio.  相似文献   

14.
A detailed numerical study has been conducted in order to analyse the combined buoyancy effects of thermal and mass diffusion on the turbulent mixed convection tube flows. Numerical results for air-water system are presented under different conditions. A low Reynolds number k-ε turbulent model is used with combined heat and mass transfer analysis in a vertical heated tube. The local heat fluxes, Nusselt and Sherwood numbers are reported to obtain an understanding of the physical phenomena. Predicted results show that a better heat transfer results for a higher gas flow Reynolds number Re, a higher heat flux qw or a lower inlet water flow Γ0. Additionally, the results indicate that the convection of heat by the flowing water film becomes the main mechanism for heat removal from the wall.  相似文献   

15.
We have studied the enhancement of heat transfer by vortex generators. Experiments were performed on rectangular‐type vortex generators mounted on a parallel‐plate heater, and the heat transfer coefficient of the heater surface and pressure drop in the duct were measured. These measurements indicated that a rectangular vortex generator (called a double‐inclined winglet), with inclination angle of the vortex generator surface to the heater surface (β) at 60°, and the attack angle to the flow direction (γ) at 45°, maximizes the local Nusselt number of the heater surface. It was also found that a group of double‐inclined winglets has an optimal arrangement in a winglet array, longitudinal pitch and transverse pitch, that maximizes the ratio [Colburn's dimensionless heat transfer coefficient JH]/[friction factor f]. The results of numerical calculations showed that the double‐inclined winglet was superior to the conventional rectangular vortex generator in heat transfer. © 2003 Wiley Periodicals, Inc. Heat Trans Asian Res, 32(3): 253–267, 2003; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.10089  相似文献   

16.
An experimental study was conducted to investigate how the addition of small amounts of a surfactant influences the heat transfer characteristics in a thin boiling liquid film flowing in a diverging open channel. Heat transfer experiments were conducted with fluid inlet temperatures from 40 °C to 92 °C. The flow field on the plate included thin film supercritical flow upstream of a hydraulic jump and thick film subcritical flow downstream of a hydraulic jump. Nusselt numbers for the non-boiling heat transfer without surfactant addition scaled linearly with the film Reynolds number. The boiling heat transfer produced higher Nusselt numbers with a weaker dependence on the Reynolds number. Experimental results showed that a boiling surfactant solution created a thick foam layer with high heat transfer rates and Nusselt numbers that are very weakly dependent on the inlet flow rate or the inlet Reynolds number.  相似文献   

17.
Researchers commonly assume that the effect of constant temperature and constant heat flux thermal boundary condition on forced convection from a circular cylinder is negligible. Such claim was assessed using Computational Fluid Dynamics for Reynolds number, Re, ≤ 3,000. The flow was directly solved without modeling for Re?≤?300, and Large Eddy Simulation was used for Re?=?1,000 and Re?=?3,000. Constant property simulations were done for Prandtl number of 0.7. Fluid dynamics parameters: drag coefficient, Strouhal number, separation angle and recirculation length, were used to assess the accuracy of the simulations. The main parameter of interest, the Nusselt number, is higher locally for constant heat flux than constant temperature for 60?≤?Re?≤?3,000. In addition, the ratio of overall Nusselt number for constant heat flux to that for constant temperature increases for Re < 30 and is ~1.15 between 30?≤?Re?≤?3,000, showing that thermal boundary condition has significant effect on heat transfer from circular cylinder. Finally, the study developed empirical correlations relating overall Nusselt number to studied Reynolds number range.  相似文献   

18.
为了获得翅片间距Pf对平直翅片管换热器的传热与阻力特性的影响规律,根据相似模化原理对3种不同Pf的平直翅片管换热器进行了试验研究。结果表明:雷诺数Rea在4 000~8 000范围内,努赛尔数Nua数随Rea的增大而增加,欧拉数Eua随Rea的增大而降低;同一Rea下,Nua随Pf减小而增加,但增加不明显,Eua随Pf增大而降低;同一Rea下,Pf越大,综合流动传热性能越好,但实际换热面积会减小,需综合考虑。研究成果可为汽轮发电机平直翅片管换热器的结构和性能优化提供依据。  相似文献   

19.
A transient liquid crystal experiment was performed to study the heat transfer characteristic of impingement cooling with outflow film on the leading edge of turbine blades under rotating conditions. In the experiments, the angles between the jet direction and rotating shaft were 0°, 30°, and 45°, respectively. The impinging jet Reynolds number, based on the diameter of the impingement hole, ranged from 2000 to 12,000. The rotation number Ro (Ωd/u) ranged from 0 to 0.278. The relative impingement distance was fixed at 2. The results showed that, due to the effect of rotation, the spreading rate of the jet flow was enhanced and the heat transfer was weakened for all Reynolds numbers. For the condition of Re = 4000 and Ro = 0.139 with corresponding angles θ = 0°, 30°, 45°, the Nusselt number of the stagnation point decreased by 33%, 30%, and 35%, respectively, compared to the stationary results. Furthermore, for the corresponding angles θ = 30° and 45°, the location of the stagnation point is offset 0.6d (jet impingement hole diameter) and 0.9d down, respectively, when Ro = 0.139. The average Nusselt numbers on the suction surface and the pressure surface both decreased with increased rotating speed. Moreover, the reduction of the average Nusselt number on the pressure surface was larger than that on the suction surface. At Ro = 0.139, the average Nusselt number on the suction surface decreased less than 10% for all three angles, while on the pressure surface, the decrease was almost 20% compared to the result for Ro = 0.  相似文献   

20.
In this study, in order to increase heat transfer in concentric double-pipe heat exchangers by passive method, snail which is mounted at inlet of the inner pipe and assumed as a swirl generator was used. In the experimental set-up, cold air in ambient conditions was passed through the inner pipe while hot water was flowing through the annulus. The effects of a snail on the heat transfer and pressure drop were investigated for parallel and counter-flow, and obtained Nusselt numbers (Nu) were compared with those found, using a standard correlation such as Dittus–Boelter equation given for axial flows in smooth pipes. The results were correlated in the form of Nusselt number as a function of Reynolds number, Prandtl number and the swirling angle. An augmentation of up to 120% in Nusselt number was obtained in the swirl flow for counter-flow and 45° swirling angle. Though the swirl flow effect of the snail caused some increase in pressure drop, this effect was unimportant compared with the improvement in heat transfer capacity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号