首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
研究了矿粉、硅灰和粉煤灰3种矿物掺合料对硫铝酸盐水泥-普通硅酸盐水泥复合体系的标准稠度用水量、凝结时间、水化放热、胶砂抗折及抗压强度、砂浆干缩率、抗硫酸盐侵蚀性能和水化产物的影响。结果表明:随矿物掺合料掺量的增加,复合体系的标准稠度用水量增大,凝结时间延长;掺加矿物掺合料后水化放热峰出现时间延后,总水化放热量减少,其中掺加矿粉和硅灰的试件初期水化速率减慢程度较掺加粉煤灰试件更明显;3种矿物掺合料对复合体系强度的影响差别较大,掺加3%硅灰的试件3 d抗压强度增长较快;硅灰的掺加会使砂浆干缩率增大,矿粉、粉煤灰的掺加可以减小砂浆试件的干缩;矿物掺合料的掺加会提高胶砂试件抗硫酸盐侵蚀性能,掺粉煤灰的试件抗硫酸盐侵蚀性能最好。  相似文献   

2.
研究了普通混凝土、矿粉混凝土、硅灰混凝土以及复掺矿粉、硅灰混凝土的坍落度、抗压强度和抗渗、抗硫酸盐侵蚀性能。试验结果表明,矿物掺合料可以明显改善混凝土的性能,掺合料种类和掺入比例直接决定了混凝土性能的改善效果;且复掺矿粉、硅灰混凝土的性能优于单掺矿粉、单掺硅灰组;当矿粉掺量20%、硅灰掺量5%时,混凝土的抗压强度、抗渗性能和抗硫酸盐侵蚀性能最好。  相似文献   

3.
通过研究了多元矿物掺合料、引气剂及聚丙烯纤维复掺混凝土的抗硫酸盐侵蚀性能.结果表明矿物掺合料的成分比例对混凝土的抗硫酸盐侵蚀性能有一定影响,随硅灰和矿渣掺量的增加、粉煤灰掺量的降低,混凝土的抗硫酸盐侵蚀性能增强;多元矿物掺合料与引气剂、聚丙烯纤维复掺优于多元矿物掺合料复掺措施;当混凝土含气量在6%、聚丙烯纤维体积掺量在...  相似文献   

4.
研究了海水环境下铝酸盐水泥与单掺硅灰、矿渣组成的复合水泥浆体的抗压强度和水化产物变化规律。结果表明,海水对铝酸盐水泥具有侵蚀作用;掺入矿物掺合料能够促进铝酸盐水泥的水化,改善水泥浆体孔隙结构,生成水化钙铝黄长石等水化产物,有利于浆体结构密实和强度发展,进而提高铝酸盐水泥强度及抗蚀性能,且随着矿物掺合料掺量的增多,抗蚀性能逐渐提升。与矿渣相比,硅灰对提高铝酸盐水泥抗蚀性能具有更好的效果,海水环境下掺入10%硅灰,28 d抗压强度最高,超过淡水环境下空白组。  相似文献   

5.
将铜尾矿渣粉与粉煤灰、矿粉进行复合,研究铜尾矿渣粉替代粉煤灰做为混凝土掺合料使用的活性影响规律。试验采用活性指数和各龄期的胶砂抗折抗压强度发展规律来分析铜尾矿渣复合掺合料的活性影响规律,铜尾矿渣粉中有一定量的活性氧化物,在与粉煤灰比例为4∶6的掺合比例下两者具有协同激发作用,使得硬化浆体具有一定的早强、抗折强度提高及较好的28 d活性。三掺料矿粉的加入量越多,性能越好。采用X射线衍射分析和带能谱分析的扫描电镜(SEM)对粉煤灰、双掺掺合料、三掺掺合料的净浆水化产物进行分析,铜尾矿渣粉与粉煤灰的双掺料在水化早期和后期都促进了硫铝酸钙的形成,早期硫铝酸钙的快速反应起到了早强的作用。铜尾矿渣粉通过与粉煤灰、矿粉按最佳比例复合,可以较好的提高铜尾矿渣粉的性能,可做为混凝土掺合料使用。  相似文献   

6.
研究了偏高岭土、粉煤灰、矿粉、硅灰等矿物掺合料种类以及掺入方式对水泥砂浆抗折性能的影响规律,采用XRD分析了硬化水泥浆体的水化产物。结果表明:单掺情况下,偏高岭土对水泥砂浆抗折强度的增强作用最明显,掺量为15%时,28、56 d水泥砂浆抗折强度分别提高了12.2%、36.1%;复掺情况下,偏高领土与粉煤灰和矿粉复掺的效果最好,28、56 d水泥砂浆抗折强度分别提高了16.4%、28.6%。掺入不同矿物掺合料时,水泥水化产物种类无明显区别,主要晶相组成为Ca(OH)_2、AFt;偏高岭土-矿粉-粉煤灰复掺,复合效应显现,提高了水化产物中钙矾石生成量,降低了水泥水化析出的Ca(OH)_2含量,能显著提高水泥砂浆的抗折强度。  相似文献   

7.
研究了偏高岭土、粉煤灰、矿粉、硅灰等矿物掺合料种类以及掺入方式对水泥砂浆抗折性能的影响规律,采用XRD分析了硬化水泥浆体的水化产物。结果表明:单掺情况下,偏高岭土对水泥砂浆抗折强度的增强作用最明显,掺量为15%时,28、56 d水泥砂浆抗折强度分别提高了12.2%、36.1%;复掺情况下,偏高领土与粉煤灰和矿粉复掺的效果最好,28、56 d水泥砂浆抗折强度分别提高了16.4%、28.6%。掺入不同矿物掺合料时,水泥水化产物种类无明显区别,主要晶相组成为Ca(OH)_2、AFt;偏高岭土-矿粉-粉煤灰复掺,复合效应显现,提高了水化产物中钙矾石生成量,降低了水泥水化析出的Ca(OH)_2含量,能显著提高水泥砂浆的抗折强度。  相似文献   

8.
牟长江  刘瑞  程凯  董帅  唐朝  牛腾  卢晓磊  叶正茂  芦令超 《混凝土》2022,(8):158-162+169
矿物掺合料是半柔性路面用水泥基灌浆材料组分中的一种重要组成部分,为了探究其对半柔性路面用水泥基灌浆材料性能影响规律,采用单掺矿粉、硅灰和微珠三种矿物掺合料,测试了其水泥基灌浆材料流出时间与抗压强度,并借助XRD和SEM分析了矿物掺合料对灌浆材料水化产物组成与形貌的影响。结果表明:分别添加矿粉和硅灰时,二者均有助于改善水泥基灌浆材料力学性能,当硅灰掺量为2.4%时,其2 h、28 d抗压强度分别增加了1.6、9.8 MPa;微珠对改善水泥基灌浆材料流动性能效果明显,当微珠掺量为20%时,其5、20 min流出时间分别降低了10、15 s。3种矿物掺合料对水泥基灌浆材料早期水化产物的物相组成影响较小,单掺微珠和硅灰使硬化浆体更加密实,且微珠对水化产物钙矾石的形貌影响显著。综合分析3种矿物掺合料对水泥基灌浆材料的强度和流动性试验结果,得到矿粉、硅灰和微珠在灌浆材料组成中的最佳掺量分别为5%、1.6%、10%。  相似文献   

9.
为考察大掺量磨细矿粉胶凝体系对抗硫酸盐侵蚀性能的影响,研究了不同品种、掺量及经体积稳定剂改性处理后磨细矿粉对抗硫酸盐侵蚀性能的影响。结果表明,不同厂家的S95级磨细矿粉对抗硫酸盐侵蚀作用的影响相近;磨细矿粉掺至50%及以上其抗蚀系数高于抗硫酸盐水泥,70%掺量的磨细矿粉胶凝体系硫酸盐侵蚀膨胀率较空白组下降81%;经体积稳定剂改性处理后磨细矿粉抗硫酸盐侵蚀性能进一步提高。  相似文献   

10.
用磨细白云石、白云石-水淬矿渣共磨物料作为混凝土矿物掺合料,研究了单掺白云石粉、白云石-水淬矿渣复合矿物掺合料对混凝土耐久性的影响。研究结果表明,单掺白云石粉使C30混凝土的电通量值增加15%,同时使碳化深度增加,并使100次冻融循环后的动弹模量损失率最大达到37.6%,弱化了混凝土的抗氯离子侵蚀性和抗碳化和抗冻性能;而单掺白云石粉使混凝土的抗硫酸盐侵蚀系数提高1.7%,抗硫酸盐侵蚀性能改善。白云石-水渣复合矿物掺合料与单掺白云石粉相比,改善了混凝土的抗氯离子渗透性、抗碳化、抗冻融性能:当水淬矿渣与白云石比例为3.5:6.5时,混凝土的耐久性包括抗氟离子侵蚀性、抗碳化、抗冻性能最好。  相似文献   

11.
研究了大掺量矿物掺合料与铝酸盐水泥复合浆体的抗压强度、电阻率、化学收缩和XRD的变化规律。结果表明,在淡水和海水环境下,一定量(40%以内)矿渣的掺入有利于促进铝酸盐水泥强度的发展,有效抑制了铝酸盐水泥后期强度倒缩;矿物掺合料可提高铝酸盐水泥抗海水侵蚀性能;铝酸盐水泥浆体的电阻率与化学收缩之间存在良好的相关性,水泥浆体的电阻率和化学收缩随着矿物掺合料掺量的增大而减小;在水化早期,矿渣和粉煤灰均未参与铝酸盐水泥的水化过程;矿渣在后期生成稳定的水化产物C_2ASH_8,其抑制晶相转变的效果较粉煤灰更为显著。  相似文献   

12.
基于固硫灰的活性激发效应和钛矿渣的减水效应,提出通过复合化技术制备钛矿渣-固硫灰复合矿物掺合料,研究了其对砂浆和混凝土的工作性能和力学性能影响,并利用DTA、XRD和SEM等手段探讨了作用机理。结果表明,钛矿渣-固硫灰复合矿物掺合料显示出了活性相互激发和减水的叠加效应。与钛矿渣相比,钛矿渣-固硫灰复合矿物掺合料活性提高;与固硫灰相比,复合矿物掺合料明显改善了砂浆和混凝土的工作性。利用钛矿渣与固硫灰质量比为2:1的复合矿物掺合料所制备的混凝土工作性能及抗压强度与S75矿粉相当。  相似文献   

13.
通过改变矿渣、粉煤灰的掺量和组合方式以及水胶比,分析了矿物掺合料对混凝土抗碳化性能的影响。同时,基于灰色关联理论对混凝土抗碳化性能受各因素的影响程度进行了定量分析,并结合硬化浆体水化产物的化学组成分析探讨了矿物掺合料的影响机理。研究结果表明:掺入矿物掺合料和增大水胶比均会使混凝土碳化深度增大,当单掺I级粉煤灰掺量超过40%后,混凝土碳化深度增长速度极快;在总掺量一致的前提下,复掺矿物掺合料组的混凝土抗碳化性能要优于单掺粉煤灰组的混凝土;矿渣和粉煤灰的不同组合方式中,S105矿渣+I级粉煤灰组的混凝土碳化深度最大;各影响因素对混凝土抗碳化性能的影响程度从高到低排序为水胶比>单掺I级粉煤灰掺量>复掺S95矿渣+I级粉煤灰总量>矿物掺合料组合方式;XRD分析表明,随着粉煤灰掺量的增加,Ca(OH)2的衍射峰高度逐渐降低,说明粉煤灰的火山灰反应消耗了大量的Ca(OH)2,从而逐步降低了混凝土的抗碳化性能。  相似文献   

14.
昌吉-古泉±1100 kV特高压直流输电线路工程途经强腐蚀盐渍土区域,塔基混凝土面临严重的硫酸盐侵蚀,开发新型耐腐蚀材料势在必行。保证强度等级C40,设计单掺、双掺及三掺粉煤灰、矿渣粉和硅粉6种混凝土配合比,采用干湿循环硫酸盐侵蚀、吸水动力学、XRD分析等方法,测试混凝土强度、孔隙结构参数及水化产物,比较各混凝土的抗硫酸盐侵蚀性能。结果表明:单掺粉煤灰时,防腐混凝土要求至少15%的掺量;使用具有不同时段活性效应及不同粒径填充效应的掺合料复掺,可以改善混凝土的孔隙结构及水化产物结构,明显提高混凝土的抗硫酸盐侵蚀能力,12%粉煤灰、12%矿渣粉和6%硅粉三掺时,混凝土的防腐效果最好。  相似文献   

15.
为优选硫酸盐与氯盐共存的盐渍土环境下桩基混凝土配合比方案,以普通钻孔灌注桩混凝土、高抗硫水泥复合大掺量矿物掺合料混凝土、普硅水泥复合大掺量矿物掺合料的高性能混凝土及添加防腐剂的高性能混凝土等4种混凝土为研究对象,研究了4种混凝土的抗硫酸盐侵蚀能力和抗氯离子侵蚀能力。结果表明:普通钻孔灌注桩混凝土抗硫酸盐侵蚀能力较强,但其抗氯离子侵蚀能力难以满足耐久性要求;高抗硫水泥复合大掺量矿物掺合料混凝土抗硫酸盐侵蚀能力较强,但其抗氯离子侵蚀能力一般;普硅水泥复合大掺量矿物掺合料的高性能混凝土同时具有优异的抗硫酸盐侵蚀能力和抗氯离子侵蚀能力;在高性能中添加防腐剂,在一定程度上降低了混凝土的耐久性。高性能钻孔灌注桩混凝土是一种适合盐渍土环境的耐久性高、经济成本低廉的混凝土。  相似文献   

16.
为了改善浪凝土的抗腐蚀性能,提高混凝土耐久性,向混凝土中掺入粉煤灰、矿粉等矿物掺合料,进行混凝土流动性、坍落度损失、抗冻、抗渗、抗硫酸盐侵蚀、抗氯离子侵蚀的性能试验研究。结果表明:矿物掺合料能够提高混凝土的流动性,改善混凝土工作性能。掺入矿物掺合料能够改善混凝土抗冻及抗渗性能,提高混凝土抗硫酸盐、抗氯离子等有害离子的侵蚀性能。大掺量矿粉的掺入对混凝土工作性能及耐久性能的改善效果比单掺粉煤灰的改善效果要好。  相似文献   

17.
为研究水胶比、减水剂和矿物掺合料掺量对超高性能混凝土(UHPC)工作性能的影响以及水胶比、矿物掺合料和钢纤维掺量对UHPC力学性能的影响,分别进行净浆流动度试验和UHPC抗折、抗压强度试验。结果表明:提高水胶比和增加粉煤灰掺量可以改善浆体的流动性,但会降低UHPC的抗折强度和抗压强度;增加矿渣粉掺量可以在改善浆体流动性的同时,提高UHPC后期的抗折强度和抗压强度;随着硅灰掺量的增加,浆体的流动性不断降低,而UHPC的抗折强度和抗压强度呈现先上升后下降的趋势,当硅灰掺量为25%时,UHPC的强度达到峰值,抗折强度和抗压强度分别提高23.7%和32.0%;钢纤维掺量的增加会提高UHPC强度,当掺入2%的钢纤维时,UHPC的抗折强度与抗压强度分别提高39.7%和59.1%。综合考虑,建议硅灰掺量在20%~30%之内为宜,矿渣粉掺量不超过30%,粉煤灰掺量不超过20%,钢纤维掺量宜取2%。  相似文献   

18.
研究了不同水泥品种、矿物掺合料对水泥基材料在10℃下抗硫酸盐侵蚀的性能的影响,分别采用普通硅酸盐水泥、中抗硫水泥以及加入矿粉与活性掺合料X的水泥砂浆试件,测试各试样在(10±1)℃的3%Na_2SO_4溶液中浸泡后的强度变化情况,综合考虑强度与抗蚀系数对砂浆抗硫酸盐侵蚀性能进行评价。结果表明:在10℃下砂浆试样的强度普遍低于常温环境下,砂浆抗硫酸盐侵蚀性能15%矿粉+3%X15%矿粉+1%X中抗硫水泥普通硅酸盐水泥。加入矿物掺合料明显改善了水泥砂浆抗硫酸盐侵蚀性能,并且活性掺合料X的含量越高效果越明显。  相似文献   

19.
采用矿渣、钢渣和粉煤灰复合制备高活性超细矿物掺合料,研究了粉磨时间、原料配比和助磨激发剂掺量对超细矿物掺合料性能的影响,并采用其替代硅灰和水泥配制UHPC,对其可行性进行分析。结果表明:采用50%矿渣、20%钢渣和30%粉煤灰,添加0.15%助磨激发剂,通过超细粉磨至比表面积920 m~2/kg,可制备出达到S105级矿粉要求的矿物掺合料;采用优选超细矿物掺合料替代硅灰配制UHPC,力学性能有所降低,但均能配制出抗压强度超过130 MPa的UHPC,且具有较好的工作性能和体积稳定性。  相似文献   

20.
为更加有效利用钢渣废料,试验采用陈化期超过12个月的两种粒级钢渣作为耐磨骨料制备混凝土地面用水泥基耐磨材料。通过对耐磨材料抗折强度、抗压强度、表面强度、耐磨度比和磨坑长度等宏观性能测试以及对其磨面结构和水化产物微观形貌分析,研究钢渣颗粒级配、灰砂比和矿粉掺量对耐磨材料力学性能和耐磨性的影响规律。单因素试验结果表明:钢渣颗粒级配直接影响耐磨材料中水泥石与钢渣的黏结程度,当粗、细钢渣复合比例为1.5∶1时,钢渣骨料级配最优,耐磨材料性能最佳。耐磨材料的力学性能随灰砂比的增加而逐渐增大,灰砂比为1∶1时,耐磨性能最好,表面强度为3.11 mm,磨坑长度为67.3 mm。矿粉可以改善耐磨材料硬化体的微观结构,增加水化产物数量,提高钢渣骨料和水泥浆体的界面黏结强度,提升耐磨材料质量。矿渣作为掺合料时,其合理掺量应控制在10%以内。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号