共查询到20条相似文献,搜索用时 15 毫秒
1.
Yu Chen Zhiliang Lei Tianhao Zhang Quan Zhu Zewei Bao Qiyi Zhang Xiang‐Yuan Li 《American Institute of Chemical Engineers》2018,64(7):2781-2791
In this article, the flow distribution of the Chinese No. 3 jet fuel in parallel minichannels heat exchanger under high temperature condition was investigated. The models of PFR and choked flow were established based on the real fluid model. The formation mechanism of flow maldistribution of the fuel in the freely distributed channels was studied. It was found that: under low heat flux, the slight flow rate deviation will be spontaneously eliminated; under high heat flux, the slight deviation of flow rate and heat flux will be enlarged and result in the channel with smaller flow rate entering the coking region. The feasibility and influence factors of the control method of flow distribution based on choked flow were discussed. The experimental results indicated that the minichannels fuel‐cooled plate with choked flow could maintain uniform flow distribution when the total fuel outlet temperature reached 1035 K. © 2018 American Institute of Chemical Engineers AIChE J, 64: 2781–2791, 2018 相似文献
2.
对垂直管内高沸点有机工质异丙苯的流动沸腾换热与摩擦压降特性进行了实验研究,获得了换热系数与摩擦压降沿流动方向的变化情况,并与前人模型的计算值进行了比较。实验过程中质量流速为382—786 kg/(m2.s),实验工况干度为0.1—0.6,压力为0.21—0.27 MPa。通过对实验数据的回归分析,获得了换热系数与摩擦压降的计算关联式。在对复杂的非线性方程进行回归分析时,提出了一种简单的迭代分析方法。研究结果丰富了高沸点工质的流动沸腾换热数据,为石化行业中换热器的设计提供了依据,并为强化凝结换热器的开发和性能测试提供了比较基准。 相似文献
3.
The approach of combined discrete particle simulation (DPS) and computational fluid dynamics (CFD), which has been increasingly applied to the modeling of particle‐fluid flow, is extended to study particle‐particle and particle‐fluid heat transfer in packed and bubbling fluidized beds at an individual particle scale. The development of this model is described first, involving three heat transfer mechanisms: fluid‐particle convection, particle‐particle conduction and particle radiation. The model is then validated by comparing the predicted results with those measured in the literature in terms of bed effective thermal conductivity and individual particle heat transfer characteristics. The contribution of each of the three heat transfer mechanisms is quantified and analyzed. The results confirm that under certain conditions, individual particle heat transfer coefficient (HTC) can be constant in a fluidized bed, independent of gas superficial velocities. However, the relationship between HTC and gas superficial velocity varies with flow conditions and material properties such as thermal conductivities. The effectiveness and possible limitation of the hot sphere approach recently used in the experimental studies of heat transfer in fluidized beds are discussed. The results show that the proposed model offers an effective method to elucidate the mechanisms governing the heat transfer in packed and bubbling fluidized beds at a particle scale. The need for further development in this area is also discussed. © 2009 American Institute of Chemical Engineers AIChE J, 2009 相似文献
4.
5.
Cyril Caliot Gilles Flamant Giorgos Patrianakos Margaritis Kostoglou Athanasios G. Konstandopoulos 《American Institute of Chemical Engineers》2012,58(8):2545-2556
A two‐dimensional model of methane thermal decomposition reactors is developed which accounts for coupled radiative heat and polydisperse carbon particle nucleation, growth, and transport. The model uses the Navier–Stokes equations for the fluid dynamics, the radiative transfer equation for methane and particle species radiation absorption, the advection–diffusion equation for gas and particle species transport, and a sectional method for particle species nucleation, heterogenous growth, and coagulation. The model is applied to a tubular laminar flow reactor. The simulation results indicate the development of a reaction boundary layer inside the reactor, which results in significant variation of the local particle size distribution across the reactor. © 2011 American Institute of Chemical Engineers AIChE J, 58: 2545–2556, 2012 相似文献
6.
7.
Experimental studies on isothermal steady state and non-isothermal unsteady state conditions were carried out in helical coils for Newtonian as well as for non-Newtonian fluids. Water and glycerol–water mixture (10 and 20% glycerol) were used as Newtonian, and 0.5–1% (w/w) dilute aqueous polymer solutions of Sodium Carboxy Methyl Cellulose (SCMC) and Sodium Alginate (SA) as non-Newtonian fluids are used in this study. These experiments were performed for coil curvature ratios as δ = 0.0757, 0.064 and 0.055 in laminar and turbulent flow regimes (total 258 tests). The CFD analyses for laminar and turbulent flow were carried out using FLUENT 12.0.16 solver of CFD package. The CFD calculation results (Nui, U, T2 and Two) for laminar and turbulent flow are compared with the experimental results and the work of earlier investigators which were found to be in good agreement. For the first time, an innovative approach of correlating Nusselt number to dimensionless number, ‘M’, Prandtl number and coil curvature ratio using least-squares power law fit is presented in this paper which is not available in the literature. Several other correlations for calculation of Nusselt number for Newtonian and non-Newtonian fluids, and two correlations for friction factor in non-Newtonian fluids (based on 78 tests and 138 tests) are proposed. These developed correlations were compared with the work of earlier investigators and are found to be in good agreement. 相似文献
8.
为了研究单弓形折流板的切口方向对管壳式换热器传热与流动性能的影响,文中通过建立3个不同折流板切口方向的管壳式换热器简化实体模型,运用CFD软件Fluent对管壳式换热器壳程传热与流动状态进行了三维数值模拟。以水为壳程流体介质,在不断改变壳程进口流速,使得壳程进口雷诺数Re在10 000到70 000范围内变化时,得到了不同状态下的壳程流场与温度场。根据数值模拟结果,以总传热系数α,壳程总压降Δp以及单位压降下的传热系数α/Δp作为综合衡量标准,分析不同折流板切口方向时的管壳式换热器壳程流场与温度场。数值模拟分析结果表明:折流板为垂直切口方向时,管壳式换热器总传热系数最大,压降最小,综合性能最好,另外2种折流板切口方向的管壳式换热器综合性能差不多。 相似文献
9.
Vimal Kumar 《Chemical engineering science》2006,61(13):4403-4416
In the present work attempts were made to investigate the hydrodynamics and heat transfer characteristics of tube-in-tube helical heat exchanger at the pilot plant scale. The experiments were carried out in counter current mode operation with hot fluid in the tube side and cold fluid in the annulus area. The outer tube was fitted with semicircular plates to support the inner tube and also to provide high turbulence in the annulus region. Overall heat transfer coefficients were calculated and heat transfer coefficients in the inner and outer tube were determined using Wilson plots. A commercial Computational Fluid Dynamics package [FLUENT User's Guide, release 6.0, Fluent Inc., Lebnon, NH, 1994] was used to predict the flow and thermal development in tube-in-tube helical heat exchanger. The Nusselt number and friction factor values in the inner and outer tubes were compared with the experimental data collected in the present study as well as reported in the literature. The CFD simulations were in agreement with the present experimental data. In case of literature data a reasonable comparison was found even though the boundary conditions in the present work were different. 相似文献
10.
11.
Yongzhi Zhao Maoqiang Jiang Yanlei Liu Jinyang Zheng 《American Institute of Chemical Engineers》2009,55(12):3109-3124
A kind of new modified computational fluid dynamics‐discrete element method (CFD‐DEM) method was founded by combining CFD based on unstructured mesh and DEM. The turbulent dense gas–solid two phase flow and the heat transfer in the equipment with complex geometry can be simulated by the programs based on the new method when the k‐ε turbulence model and the multiway coupling heat transfer model among particles, walls and gas were employed. The new CFD‐DEM coupling method that combining k‐ε turbulence model and heat transfer model, was employed to simulate the flow and the heat transfer behaviors in the fluidized bed with an immersed tube. The microscale mechanism of heat transfer in the fluidized bed was explored by the simulation results and the critical factors that influence the heat transfer between the tube and the bed were discussed. The profiles of average solids fraction and heat transfer coefficient between gas‐tube and particle‐tube around the tube were obtained and the influences of fluidization parameters such as gas velocity and particle diameter on the transfer coefficient were explored by simulations. The computational results agree well with the experiment, which shows that the new CFD‐DEM method is feasible and accurate for the simulation of complex gas–solid flow with heat transfer. And this will improve the farther simulation study of the gas–solid two phase flow with chemical reactions in the fluidized bed. © 2009 American Institute of Chemical Engineers AIChE J, 2009 相似文献
12.
13.
提出一种根据设计基础条件(产量、气浓、二氧化硫转化率、焚硫空气温度、允许锅炉的压力降等)快速确定火管废热锅炉主要结构参数的计算方法,该方法以一系列关联各个设计操作参数和主要结构参数,可快速确定详细设计需要的烟管数量及其长度。 相似文献
14.
15.
Improving the thermal–hydraulic performance of heat exchangers is a critical challenge. In this study, we investigated the impact of twisted tape insert geometrical variables, namely pitch length (P) and diameter (W), on the Nusselt number (Nu) and friction factor (f) within serpentine channels. To accomplish this, we employed computational fluid dynamics (CFD) as our simulation technique, with water as the working fluid. The validity of the CFD data was confirmed, leading to the development of artificial intelligence (AI) subsets: artificial neural network (ANN) and genetic algorithm (GA). In the prediction models, the following input variables were considered: Reynolds number (Re), (P/Dh), and (W/Dh). The ANN and GA models achieved a mean relative error (MRE) of 0.125% and 1.326% for Nu, and 0.139% and 4.104% for f, respectively. These results demonstrate the high accuracy of the correlations, with the ANN model showcasing superior performance. 相似文献
16.
Christopher S. Roper Kathryn D. Fink Samuel T. Lee Joanna A. Kolodziejska Alan J. Jacobsen 《American Institute of Chemical Engineers》2013,59(2):622-629
Fluid dynamics and heat transfer of flow through periodic open‐cellular microlattice structures are characterized for varying superficial flow orientations and flow rates to investigate heat transfer and pressure loss anisotropy. For given Reynolds number, friction factor is lowest when flow is aligned with the largest straight‐through passages in the microlattice. A maximum friction factor, over twice the optimally aligned friction factor, exists for flow orientations between π/8 and π/4 rad off the optimal alignment, with little variation in friction factor for π/8 and π/4 rad. Heat transfer is maximized at π/4 rad off axis from the largest straight‐through passages; however, less angular variation occurs in Nusselt number than in friction factor. Empirical correlations involving superellipses yield analytical equations describing Nusselt number dependence on flow angle and Reynolds number. This work enables selection of optimal flow orientations and optimal cellular architecture in convective heat transfer implementations of microlattice materials for lightweight and multifunctional applications. © 2012 American Institute of Chemical Engineers AIChE J, 59: 622–629, 2013 相似文献
17.
18.
19.
Fully developed laminar flow and heat transfer in three-dimensional, streamwise-periodic sinusoidal channels with circular and semi-circular cross-sections are considered. Computational fluid dynamics (CFD) is used to investigate the effect of Reynolds number (5?Re?200) and amplitude to half wavelength ratio (0.222?A/L?0.667) on heat transfer enhancement and pressure drop for steady, incompressible, constant property, water (Pr=6.13) flows in geometries with L/d=4.5 for the constant wall heat flux (H2) and constant wall temperature (T) boundary conditions.The flow field in the sinusoidal geometries is increasingly dominated by secondary flow structures (Dean vortices) with increasing Reynolds number and A/L. These vortices act to promote convective heat transfer enhancement, resulting in high rates of heat transfer and low pressure loss relative to fully developed flow in a straight pipe. Heat transfer enhancement exceeds the relative pressure-drop penalty by factors as large as 1.5 and 1.8 for the circular and semi-circular cross-sections, respectively. 相似文献
20.
针对双回路液冷电池热管理系统关键部件电池冷却器进行仿真研究,将提取出的冷却液侧流道作为研究对象,分析换热器中波纹板结构、冷却液质量流量与入口温度对于流道内流动及换热的影响。研究发现,波纹及上下板间的触点结构会在流道中产生的二次流,在低Reynolds数(Re=739)下即可达到湍流,增强了换热效果。拟合了板片Nusselt数与Reynolds数的关系式,发现板片的平均传热系数随着质量流量的提高而增加,增幅可达374%,但功耗也随之迅速增加,因而,需要合理选择质量流量以平衡传热与功耗。冷却液入口温度主要通过热物性影响传热系数及压降,但整体影响幅度较小,因而在实际使用中可不考虑季节与运行因素对电池冷却器性能的影响。 相似文献