首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Scanning nanofocus X‐ray diffraction (nXRD) performed at a synchrotron is used to simultaneously probe the morphology and the structural properties of spin‐coated CH3NH3PbI3 (MAPI) perovskite films for photovoltaic devices. MAPI films are spin‐coated on a Si/SiO2/poly(3,4‐ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) substrate held at different temperatures during the deposition in order to tune the perovskite film coverage. The films are then investigated using nXRD and scanning electron microscopy (SEM). The advantages of nXRD over SEM and other techniques are discussed. A method to visualize, selectively isolate, and structurally characterize single perovskite grains buried within a complex, polycrystalline film is developed. The results of nXRD measurements are correlated with solar cell device measurements, and it is shown that spin‐coating the perovskite precursor solution at elevated temperatures leads to improved surface coverage and enhanced solar cell performance.  相似文献   

2.
Thermoelectrics are being rapidly developed for waste heat recovery applications, particularly in automobiles, to reduce carbon emissions. PbTe‐based materials with small (<20 nm) nanoscale features have been previously shown to have high thermoelectric figure‐of‐merit, zT, largely arising from low lattice thermal conductivity particularly at low temperatures. Separating the various phonon scattering mechanisms and the electronic contribution to the thermal conductivity is a serious challenge to understanding, and further optimizing, these nanocomposites. Here we show that relatively large nanometer‐scale (50–200 nm) Ag2Te precipitates in PbTe can be controlled according to the equilibrium phase diagram and these materials show intrinsic semiconductor behavior with high electrical resistivity, enabling direct measurement of the phonon thermal conductivity. This study provides direct evidence that even large nanometer‐scale microstructures reduce thermal conductivity below that of a macro‐scale composite of saturated alloys with Kapitza‐type interfacial thermal resistance at the same overall composition. Carrier concentration control is achieved with lanthanum doping, enabling independent control of the electronic properties and microstructure. These materials exhibit lattice thermal conductivity which approaches the theoretical minimum above ~650 K, even lower than that found with small nanoparticles. Optimally La‐doped n‐type PbTe‐Ag2Te nanocomposites exhibit zT > 1.5 at 775 K.  相似文献   

3.
To understand the origin of the increase in critical current density of rare earth barium cuprate superconductor thin films with decreasing thickness, a series of sub‐300‐nm EuBa2Cu3O7?δ thin films deposited on SrTiO3 substrates are studied by X‐ray diffraction and electrical transport measurements. The out‐of‐plane crystallographic mosaic tilt and the out‐of‐plane microstrain both increase with decreasing film thickness. The calculated density of c‐axis threading dislocations matches the extent of the observed low‐field enhancement in critical current density for fields applied parallel to c. The in‐plane mosaic twist and in‐plane microstrain are both around twice the magnitude of the out‐of‐plane values, and both increase with decreasing film thickness. The results are consistent with the observed stronger field enhancement in critical current density for fields applied parallel to ab. The lattice parameter variation with thickness is not as expected from consideration of the biaxial strain with the substrate, indicative of in‐plane microstrain accommodation by oxygen disorder. Collectively, the results point to an enhancement of critical current by interfacial strain induced oxygen disorder which is greatest closest to the film‐substrate interface. The findings of this study have important implications for other thin functional oxide perovskite films and nanostructures where surface and interfacial strains dominate the properties.  相似文献   

4.
5.
The formation of nanoporous gold by open circuit dealloying of 100 nm AgAu foils in nitric acid is investigated in situ and in real time by combining synchrotron small angle X‐ray scattering (SAXS) and X‐ray diffraction (XRD). The time dependence of the dealloying is followed as a function of acid concentration. For all concentrations, several characteristic dealloying stages are observed. Firstly, there is a fast initial dissolution stage with an increase in surface area due to pore and mound formation; this leads to strain in the nanoporous gold that results from an increase in capillary pressure. After dissolution is complete, there is rapid coarsening of the quasi‐periodic, pore–ligament morphology. During this later stage, we deduce strong strain anisotropies that can be explained by preferred crystallographic orientation of ligaments. This rapid coarsening stage is followed by a slow coarsening stage where the SAXS patterns, and hence the quasi‐periodic morphology, is self‐similar in time. There is a strong correlation between the morphology evolution and strain development, which can be explained by capillary forces.  相似文献   

6.
7.
Discoveries of room‐temperature ferromagnetism (RTFM) in semiconductors hold great promise in future spintronics technologies. Unfortunately, this ferromagnetism remains poorly understood and the debate concerning the nature, carrier‐mediated versus defect‐mediated, of this ferromagnetism in semiconducting oxides is still open. Here, by using X‐ray absorption (XAS) and X‐ray magnetic circular dichroism (XMCD), it is demonstrated that the oxygen ions have a ferromagnetic response in different ZnO‐based compounds showing RTFM behavior: ZnO nanoparticles capped with organic molecules and ZnO/ZnS heterostructures. These results demonstrate the intrinsic occurrence of RTFM in these systems, and point out that it is not related to the metallic cation but it relays on the conduction band of the semiconductor.  相似文献   

8.
The development of new energetic materials is an emerging area of materials chemistry facilitated by a worldwide need to replace materials used at present, due to environmental considerations and safety requirements, while at the same time securing high performance. The development of such materials is complex, owing to the fact that several different and apparently mutually exclusive material properties have to be met in order for a new material to become widely accepted. In turn, understanding the basic principles of structure property relationships is highly desirable, as such an understanding would allow for a more rational design process to yield the desired properties. This article covers the trinitroethyl functionality and its potential for the design of next generation energetic materials, and describes relevant aspects of energetic materials chemistry including theoretical calculations capable of reliably predicting material properties. The synthesis, characterization, energetic properties, and structure property relationships of several new promising compounds displaying excellent material properties are reported with respect to different kinds of applications and compared to standard explosives currently used. Based on a review of trinitroethyl‐containing compounds available in the literature, as well as this new contribution, it is observed that high density can generally be obtained in a more targeted manner in energetic materials taking advantage of noncovalent bonding interactions, a prerequisite for the design of next generation energetic materials.  相似文献   

9.
Side‐chain engineering is increasingly being utilized as a technique to impact the structural order and enhance the electronic properties of semiconducting polymers. However, the correlations drawn between structural changes and the resulting charge transport properties are typically indirect and qualitative in nature. In the present work, a combination of grazing incidence X‐ray diffraction and crystallographic refinement calculations is used to determine the precise molecular packing structure of two thiophene‐based semiconducting polymers to study the impact of side‐chain modifications. The optimized structures provide high‐quality fits to the experimental data and demonstrate that in addition to a large difference in interchain spacing between the two materials, there exists a significant disparity in backbone orientation as well. The calculated structures are utilized in density functional theory calculations to determine the band structure of the two materials and are shown to exhibit a dramatic disparity in interchain dispersion which accounts for the large observed difference in charge carrier mobility. The techniques presented here are meant to be general and are therefore applicable to many other highly diffracting semicrystalline polymers.  相似文献   

10.
锆钛酸铅(PZT)薄膜具有优异的压电性能,是制作微机电系统(MEMS)振动式能量收集器的理想材料。在溶胶-凝胶法制备PZT薄膜的过程中产生的残余应力会对能量收集器有负面影响。该文利用X线衍射法对在退火温度分别为650℃、700℃、750℃、800℃下掺杂铌(Nb)和钴(Co)元素的PZT薄膜样品的残余应力进行了测定。实验结果表明,PZT薄膜样品中的残余应力表现为压应力,从650℃升高到750℃的过程中,随着退火温度的升高薄膜中的残余应力增大;直到750℃附近后,残余应力基本保持稳定。  相似文献   

11.
Recent improvements in solution‐coated organic semiconductors (OSCs) evidence their high potential for cost‐efficient organic electronics and sensors. Molecular packing structure determines the charge transport property of molecular solids. However, it remains challenging to control the molecular packing structure for a given OSC. Here, the application of alternating electric fields is reported to fine‐tune the crystal packing of OSC solution‐shearing coated at ambient conditions. First, a theoretical model based on dielectrophoresis is developed to guide the selection of the optimal conditions (frequency and amplitude) of the electric field applied through the solution‐shearing blade during coating of OSC thin films. Next, electric field‐induced polymorphism is demonstrated for OSCs with both herringbone and 2D brick‐wall packing motifs in 2,7‐dioctyl[1]benzothieno[3,2‐b][1]benzothiophene and 6,13‐bis(triisopropylsilylethynyl) pentacene, respectively. Favorable molecular packing can be accessible in some cases, resulting in higher charge carrier mobilities. This work provides a new approach to tune the properties of solution‐coated OSCs in functional devices for high‐performance printed electronics.  相似文献   

12.
Perovskite‐like NaNbO3‐Bi1/3NbO3 solid solutions are studied to understand the interactions between octahedral rotations, which dominate the structural behavior of NaNbO3 and displacive disorder of Bi present in Bi1/3NbO3. Models of instantaneous structures for representative compositions are obtained by refining atomic coordinates against X‐ray total scattering and extended X‐ray‐absorption fine structure data, with additional input obtained from transmission electron microscopy. A mixture of distinct cations and vacancies on the cuboctahedral A‐sites in Na1?3xBixNbO3 (x ≤ 0.2) results in 3D nanoscale modulations of structural distortions. This phenomenon is determined by the inevitable correlations in the chemical composition of adjacent unit cells according to the structure type—an intrinsic property of any nonmolecular crystals. Octahedral rotations become suppressed as x increases. Out‐of‐phase rotations vanish for x > 0.1, whereas in‐phase tilts persist up to x = 0.2, although for this composition their correlation length becomes limited to the nanoscale. The loss of out‐of‐phase tilting is accompanied by qualitative changes in the probability density distributions for Bi and Nb, with both species becoming disordered over loci offset from the centers of their respective oxygen cages. Symmetry arguments are used to attribute this effect to different strengths of the coupling between the cation displacements and out‐of‐phase versus in‐phase rotations. The displacive disorder of Bi and Nb combined with nanoscale clustering of lattice distortions are primarily responsible for the anomalous broadening of the temperature dependence of the dielectric constant.  相似文献   

13.
Photochromic molecular switches immobilized by direct contact with surfaces typically show only weak response to optical excitation, which often is not reversible. In contrast, here, it is shown that a complete and reversible ring‐opening and ring‐closing reaction of submonolayers of spironaphthopyran on the Bi(111) surface is possible. The ring opening to the merocyanine isomer is initiated by ultraviolet light. Switching occurs in a two‐step process, in which after optical excitation, an energy barrier needs to be overcome to convert to the merocyanine form. This leads to a strong temperature dependence of the conversion efficiency. Switching of the merocyanine isomer back to the closed form is achieved by a temperature increase. Thus, the process can be repeated in a fully reversible manner, in contrast to previously studied nitrospiropyran molecules on surfaces. This is attributed to the destabilization of the merocyanine isomer by the electron‐donating nature of the naphtho group and the reduced van der Waals interaction of the Bi(111) surface. The result shows that molecules designed for switching in solutions need to be modified to function in direct contact with a surface.  相似文献   

14.
LiFePO4 is a promising phase‐separating battery electrode and a model system for studying lithiation. The role of particle synthesis and the corresponding particle morphology on the nanoscale insertion and migration of Li is not well understood, and elucidating the intercalation pathway is crucial toward improving battery performance. A synchrotron operando liquid X‐ray imaging platform is developed to track the migration of Li in LiFePO4 electrodes with single‐particle sensitivity. Lithiation is tracked in two particle types—ellipsoidal and platelet—while the particles cycle in an organic liquid electrolyte, and the results show a clear dichotomy in the intercalation pathway. The ellipsoidal particles intercalate sequentially, concentrating the current in a small number of actively intercalating particles. At the same cycling rate, platelet particles intercalate simultaneously, leading to a significantly more uniform current distribution. Assuming that the particles intercalate through a single‐phase pathway, it is proposed that the two particle types exhibit different surface properties, a result of different synthesis procedures, which affect the surface reactivity of LiFePO4. Alternatively, if the particles intercalate through nucleation and growth, the larger size of platelet particles may account for the dichotomy. Beyond providing particle engineering insights, the operando microscopy platform enables new opportunities for nanoscale chemical imaging of liquid‐based electrochemical systems.  相似文献   

15.
16.
The dielectric and piezoelectric properties of ferroelectric polycrystalline materials have long been known to be strong functions of grain size and extrinsic effects such as domain wall motion. In BaTiO3, for example, it has been observed for several decades that the piezoelectric and dielectric properties are maximized at intermediate grain sizes (≈1 μm) and different theoretical models have been introduced to describe the physical origin of this effect. Here, using in situ, high‐energy X‐ray diffraction during application of electric fields, it is shown that 90° domain wall motion during both strong (above coercive) and weak (below coercive) electric fields is greatest at these intermediate grain sizes, correlating with the enhanced permittivity and piezoelectric properties observed in BaTiO3. This result validates the long‐standing theory in attributing the size effects in polycrystalline BaTiO3 to domain wall displacement. It is now empirically established that a doubling or more in the piezoelectric and dielectric properties of polycrystalline ferroelectric materials can be achieved through domain wall displacement effects; such mechanisms are suggested for use in the design of new ferroelectric materials with enhanced properties.  相似文献   

17.
The loss of centrosymmetry via oxygen octahedral rotations is demonstrated in the n = 2 Dion–Jacobson family of layered oxide perovskites, A′LaB2O7 (A′ = Rb, Cs; B = Nb, Ta). Ab initio density functional theory calculations predict that all four materials should adopt polar space groups, in contrast to the results of previous experimental studies that have assigned these materials to the centrosymmetric P4/mmm space group. Optical second harmonic generation experiments confirm the presence of a noncentrosymmetric phase at ambient temperature. Piezoresponse force microscopy experiments also show that this phase is piezoelectric. To elucidate the symmetry‐breaking and assign the appropriate space groups, the crystal structure of CsLaNb2O7 is refined as a function of temperature from synchrotron X‐ray diffraction data. Above 550 K, CsLaNb2O7 adopts the previously determined centrosymmetric P4/mmm space group. Between 550 and 350 K, the symmetry is lowered to the noncentrosymmetric space group Amm2. Below 350 K, additional symmetry lowering is observed as peak splitting, but the space group cannot be unambiguously identified.  相似文献   

18.
19.
Since the discovery of Ti3C2Tx in 2011, the family of two‐dimensional transition metal carbides, carbonitrides, and nitrides (collectively known as MXenes) has quickly attracted the attention of those developing energy storage applications such as electrodes for supercapacitors with acidic aqueous electrolytes. The excellent performance of these MXenes is attributed to a pseudocapacitive energy storage mechanism, based on the non‐rectangular shape of cyclic voltammetry curves and changes in the titanium oxidation state detected by in situ X‐ray absorption spectroscopy. However, the pseudocapacitive mechanism is not well understood and no dimensional changes due to proton insertion have been reported. In this work, in situ X‐ray diffraction and density functional theory are used to investigate the charge storage mechanism of Ti3C2Tx in 1 m H2SO4. Results reveal that a 0.5 Å expansion and shrinkage of the c‐lattice parameter of Ti3C2Tx occur during cycling in a 0.9 V voltage window, showing that the charge storage mechanism is intercalation pseudocapacitance with implication for MXene use in energy storage and electrochemical actuators.  相似文献   

20.
Metal oxides (MOs) are used in photovoltaics and microelectronics as surface passivating layers and gate dielectrics, respectively. The effectiveness of MOs predominantly depends on their structure and the nature of the semiconductor/MO (S/MO) interface. While some efforts are made to analyze interface behavior of a few MOs, greater fundamental understanding on the interface and structural behaviors of emerging MOs is yet to be established for enhanced scientific and technological developments. Here, the structure of atomic layer deposited titanium oxide (TiOx) and the nature of the c‐Si/TiOx interface on the atomic‐ to nanoscale are probed. A new breed of mixed oxide (SiOx+TiOx) interfacial layer with a thickness of ≈1.3 nm at the c‐Si/TiOx interface is discovered, and its thickness further increases to ≈1.5 nm after postdeposition annealing. It is observed that both as‐deposited and annealed monolithic TiOx films comprise multiple bonding states at varying film thickness, with an oxygen‐deficient TiOx layer located close to the mixed oxide/TiOx interface. The stoichiometry of this layer improves when reaching the middle and near surface regions of the TiOx layer, respectively. This work uncovers several critical structural and interface aspects of TiOx, and thus creates opportunities to control and design improved photovoltaic and electronic devices for future development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号