首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用高温固相反应法制备了高温质子导体La2-xCaxCe2O7-δ(0≤x≤0.2)。分别利用X射线衍射(XRD)、扫描电子显微镜(SEM)对试样的相组成、微观形貌进行了表征。并对试样在水蒸气和CO2气氛中的化学稳定性进行了测试。研究了不同掺杂量和不同测试气氛对La2-xCaxCe2O7-δ电性能的影响。实验结果表明:1 500℃烧结的试样均形成萤石型结构;试样在CO2和水蒸气气氛中表现出良好的化学稳定性。试样在湿润氢气气氛下的电导率明显高于干燥空气气氛,x=0.1的试样在湿润氢气气氛中具有最高的电导率,850℃时达到3.16×10-2S.cm-1,电导活化能为84.93 kJ.mol-1。  相似文献   

2.
采用高温固相反应法制备了质子导体BaCe0.8-xNbxGd0.2O3-δ(0≤x≤0.45)。结合XRD、SEM、EIS等技术对其物相、微观形貌、稳定性及电导率进行了研究。结果表明,在1600℃烧结5h制备的质子导体BaCe0.8-xNbxGd0.2O3-δ(0≤x≤0.45)均能保持主相为斜方晶的钙钛矿结构。Nb的加入可明显提高烧结样品的致密性及在CO2和水蒸气气氛下的稳定性。在湿润H2/Ar(0.4%,V/V)气氛中800℃下,x=0.1样品的电导率为5.73mS·cm-1,电导活化能为0.35eV,与x=0的样品相当。  相似文献   

3.
采用溶胶-凝胶法, 以低于固相合成法150~250 ℃的温度进行烧结, 分别制备了BaCe0.9Y0.1O3-α和BaCe0.5Zr0.4Y0.1O3-α固体电解质. 应用AUTOLAB PGSTA 30型电化学工作站测定了两种电解质在不同温度下的阻抗谱, 在350~800 ℃范围内电导率分别为1.62×10-4~6.43×10-3 S·cm-1, 2.52×10-5~3.73×10-3 S·cm-1, 电导激活能分别为0.54和0.84 eV. 同时用高温固相合成法合成了BaCe0.9Y0.1O3-α质子导体, 在相同条件下其电导率为1×10-4~4×10-3 S·cm-1, 激活能为0.50 eV. 实验结果表明 用溶胶-凝胶法得到的材料在烧结温度低于固相合成法150~250 ℃的情况下, 制备出的样品电导率高;对于同一质子导体BaCe0.9Y0.1O3-α, 用Zr代替部分Ce, 固体电解质的电导率明显降低.  相似文献   

4.
采用有机凝胶法结合固相烧结技术制备了Sm_0.9St_0.1Al_0.5Mn_0.5O_(3-δ)(SSAM9 155)新犁导电陶瓷.通过TG/DTA,FTIR, XRD,SEM和直流四引线法系统研究了凝胶前驱体的热分解及其相转化过程和烧结体的结构、相稳定性、微观形貌、电导率以及电输运机制.结果表明,凝胶前驱体在900℃焙烧5 h可以形成完全晶化的四方钙钛矿相纳米粉体;高温烧结制得的SSAM9155陶瓷的电导率取决于P型电导,电导率随温度的升高而增大,导电行为符合P型小极化子跳跃机制;随烧结温度的升高或保温时间的延长,SSAM9155陶瓷的电导率和相对密度都先增大后减小,1600℃烧结10 h制得的SSAM9155陶瓷具有最高的电导率和相对密度(98%),该样品在空气和氢气气氛中850℃时的电导率分别为8.21和1.26 S·cm~(-1),表观活化能分别为0.265和0.465 eV.具有较高电导率的Sr,Mn掺杂的SmAlO_3导电陶瓷有望成为一种新型的固体氧化物燃料电池(SOFC)阳极材料.  相似文献   

5.
林和成a  b 杨勇  a 《化学学报》2009,67(2):104-108
通过共沉淀与固相反应法制备层状的LiNi0.45Mn0.45Co0.10O2, 并利用X射线衍射(XRD)和电子扫描显微镜(SEM)测定材料的结构和形貌. 在2.5~4.5 V范围内, 以0.1 C (28 mA•g-1)放电, LiNi0.45Mn0.45Co0.10O2正极材料的起始放电容量达到167.2 mAh•g-1, 但循环性能较差. 当采用AlF3包覆后, 材料的循环性能得到明显改善. 利用电化学阻抗谱(EIS)技术探索AlF3包覆对正极材料的电化学性能改善机理, 实验结果表明: AlF3包覆层能够阻止电解液对正极材料的溶解和侵蚀, 稳定其层状结构, 同时降低了电极界面阻抗. 因此AlF3包覆技术是一种改善LiNi0.45Mn0.45Co0.10O2材料电化学性能的有效方法和工具.  相似文献   

6.
[(PbCl2)0.55(PbO)0.45]1—x(KCl)x系离子导电性研究   总被引:1,自引:0,他引:1  
对POGI_2-PbO体系进行KGl掺杂改性研究.实验表明少量KGl掺杂试样可直接在空气中烧结制备.对[(PbCl_2)_(0.55)(PbO)_(0.45)]_(1-x)(KCl)_x(x=0~0.30)的试样进行了电学测试.并做了X射线物相鉴定以确定高电导体系的主相.对0.05≤x≤0.22之间的体系电导率低谷现象进行了解释.  相似文献   

7.
采用有机凝胶法结合固相烧结技术制备了Sm0.9Sr0.1Al0.5Mn0.5O3-δ (SSAM9155)新型导电陶瓷. 通过TG/DTA, FTIR, XRD, SEM和直流四引线法系统研究了凝胶前驱体的热分解及其相转化过程和烧结体的结构、相稳定性、微观形貌、电导率以及电输运机制. 结果表明, 凝胶前驱体在900 ℃焙烧5 h可以形成完全晶化的四方钙钛矿相纳米粉体; 高温烧结制得的SSAM9155陶瓷的电导率取决于p型电导, 电导率随温度的升高而增大, 导电行为符合p型小极化子跳跃机制; 随烧结温度的升高或保温时间的延长, SSAM9155陶瓷的电导率和相对密度都先增大后减小, 1600 ℃烧结10 h制得的SSAM9155陶瓷具有最高的电导率和相对密度(98%), 该样品在空气和氢气气氛中850 ℃时的电导率分别为8.21和1.26 S•cm-1, 表观活化能分别为0.265和0.465 eV. 具有较高电导率的Sr, Mn掺杂的SmAlO3导电陶瓷有望成为一种新型的固体氧化物燃料电池(SOFC)阳极材料.  相似文献   

8.
采用溶胶-凝胶(Sol-gel)法制得了固体电解质NASICON材料.用X射线衍射、红外光谱、拉曼光谱、核磁共振等方法对材料的结构、组成进行了分析,并对材料的电导率进行测量,证明材料具有快离子导电特性.通过对不同烧结温度下材料性质进行比较,发现900℃烧结温度下得到的材料具有更好的晶相结构和电导率.  相似文献   

9.
缓冲溶液法制备氧化钐稳定氧化锆纳米粉体及其表征   总被引:1,自引:1,他引:1  
以硝酸盐为前驱体、NH3·H2O-NH4HCO3为复合沉淀剂,采用缓冲溶液法制备了含4%~12%(摩尔分数)Sm2O3的ZrO2粉体。通过X射线衍射、透射电镜及比表面吸附法等对所得粉体的相结构、形貌和粒度进行了测定。所得粉体经冷等静压成形后,在1300~1500℃下烧结5h,得到烧结体。采用阿基米德法(水介质)测定了烧结体的密度,采用扫描电镜对烧结体的微结构进行了观测,并通过交流阻抗谱法测定了烧结体的电导率。实验结果表明:当Sm2O3掺杂量大于8%时,在600℃煅烧共沉淀物可得到具有立方结构的氧化钐稳定氧化锆(SSZ)粉体,其颗粒形状规则,粒径在10~20nm。随着Sm2O3掺杂量的增加和烧结温度的升高,烧结体的相对密度增加,1500℃烧结的掺杂12%Sm2O3的ZrO2(12SSZ)烧结体的相对密度为96.91%。在500~800℃的测量范围内,SSZ烧结体的电导率与温度成线性关系,12SSZ在800℃时的电导率可达0.043S·cm^-1,电导活化能为0.72eV。  相似文献   

10.
稀土Z型铁氧体Ba3-xCexCo2Fe24O41的制备及其微波吸收性能   总被引:1,自引:0,他引:1  
采用溶胶-凝胶法合成了掺杂Ce的磁铅石型系列Z型钡铁氧体(Ba3-xCexCo2Fe24O41,x=0.00~0.40).结果表明,Z型钡铁氧体的最佳成相条件为1250 ℃/5 h;测试不同烧结温度下Ba3Co2Fe24O41的吸波特性,发现经1300 ℃/5 h烧结后所得试样对微波的吸收特性最为优良,最大衰减量可达35.012 dB.经1300 ℃/5 h下得到的Ba3-xCexCo2Fe24O41(x=0.00~0.40)的吸波特性分析表明,适量掺杂Ce可以提高Z型钡铁氧体的吸波特性,当x=0.3时有最大衰减量47.575 dB.  相似文献   

11.
研究了Sc_2O_3掺杂CeO_2基电解质材料的微观形貌和电性能。采用溶胶凝胶法制备了Sc_2O_3掺杂CeO_2基电解质粉体, Sc_2O_3掺杂量分别为6%, 8%, 10%。采用单向压力法将电解质粉体压制为圆片状素坯,分别在1400, 1450, 1500℃下,空气中烧结制备电解质材料。研究分析了不同掺杂比例及不同烧结温度对电解质的相组成、微观形貌及电导率的影响。实验结果表明:低温下, Sc_2O_3能溶于CeO_2中形成固溶体,随着Sc_2O_3掺杂量由6%增加到10%(摩尔分数,下同),晶胞参数减小;高温烧结时溶于CeO_2中的Sc_2O_3会析出,且随着烧结温度的升高析出量增加;当Sc_2O_3掺杂量为8%、烧结温度为1500℃时,在750℃时Sc_2O_3掺杂CeO_2电解质电导率最大为8.78×10~(-3) S·cm~(-1),活化能为1.220 eV。  相似文献   

12.
BaCe_(0.8)Y_(0.2)O_(3-α)的溶胶-凝胶法合成及其电性能   总被引:3,自引:0,他引:3  
贾定先  马桂林  石慧 《化学学报》2002,60(10):1737-1741
用溶胶-凝胶法合成了BaCe_(0.8)Y_(0.2)O_(3-α)固体电解质前驱体,并以低 于通常固相反应150~250 ℃的温度(即1400~1500 ℃)进行了烧结。以烧结体样 品为固体电解质、多孔性铂为电极,组成氢及氧浓差电池、氢-空气燃料电池,测 定了BaCe_(0.8)Y_(0.2)O_(3-α)烧结体的质子和氧离子迁移数以及燃料电池的性 能,并与高温固相反应法合成的样品进行了比较。结果表明,烧结温度能显著影响 溶胶-凝胶法合成样品的质子迁移数及燃料电池性能。烧结温度≥ 1450 ℃时,质 子迁移数近似为1,燃料电池性能亦较高,烧结温度< 1450 ℃时,质子迁移数< 1 ,燃料电池性能亦较低。在1400~1500 ℃烧结的样品中,1450 ℃下烧结的样品具 有最高的电池性能,接近于高温固相反应法合成的样品。  相似文献   

13.
通过氢氧化物共沉淀法制备了Mn0.45Ni0.45Co0.1(OH)2, 研究了反应条件对产物形貌特征的影响, 重点研究了F-离子对产物形貌特征、振实密度的影响. 利用前述产物通过高温固相合成法制备了高密度的LiMn0.45Ni0.45Co0.1O2和LiMn0.45Ni0.45Co0.1O1.96F0.04正极材料, 并研究了F元素掺杂对循环性能的影响. 结果表明, 在沉淀体系中加入F-, 可以改善产物的形貌特征和振实密度. SEM 测试结果表明, 产物具有良好的形貌; XRD测试表明, 产物具有良好的层状结构, 无杂质相存在. 在充放电电压区间为2.8-4.4 V, 电流密度为30 mA·g-1 时, LiMn0.45Ni0.45Co0.1O2和LiMn0.45Ni0.45Co0.1O1.96F0.04首次放电容量均为157 mAh·g-1, 经过50 次循环, 放电容量保持率分别为72.6%和86.0%, F元素的掺杂可以明显改进材料的循环性能.  相似文献   

14.
采用改进的溶胶-凝胶法合成固体氧化物燃料电池阴极系粉体Pr0.6-zSr0.4Co0.8Fe0.2O3-δ(PSCF)(z=0,0.02,0.05,0.1)。使用X射线衍射(XRD)、扫描电子显微镜(SEM)对其相结构与形貌进行了分析,结果表明:900℃以上焙烧后的阴极粉体Pr0.6-zSr0.4Co0.8Fe0.2O3-δ(z=0,0.02,0.05,0.1)为单一的钙钛矿结构。1000℃烧结的样品内粒子分布比较均匀,且颗粒内部存在一定程度的空隙,并与电解质附着情况良好。用直流四电极法测试阴极体系样品在400~750℃的电导率,发现各试样混合离子电子电导率均高于786 S.cm-1,能够满足固体氧化物燃料电池对阴极电导率的要求。用交流阻抗法测定PSCF-Ce0.8Sm0.2O1.9体系样品的阻抗谱,得到1000℃烧结的阴极体系对称电池在测试温度为750℃z=0,z=0.02,z=0.05时的极化电阻分别为0.041,0.040,0.034Ω.cm-2。  相似文献   

15.
采用共沉淀法和胶溶法分别制备了高性能的储氧材料Ce0.45Zr0.45Y0.07La0.03O1.95(OSM)和耐高温高比表面的La-Ba-Al2O3,并以它们为载体,制备了一系列整体式铁基催化剂.考察了该系列催化剂对甲烷稀薄燃烧的催化性能.并用低温N2吸附-脱附,储氧量(OSC)测试,X射线衍射(XRD)和H2程序升温还原(H2-TPR)等测试手段考察了不同Ce0.45Zr0.45Y0.07La0.03O1.95/La-Ba-Al2O3质量比对催化剂特性的影响.活性测试结果表明,当Ce0.45Zr0.45Y0.07La0.03O1.95/La-Ba-Al2O3质量比为1:1时新鲜和老化催化剂的活性均最好,新鲜催化剂可在50000h-1的高空速条件下使含量为1%(体积分数)的甲烷在446℃起燃,553℃完全转化;低温氮气吸附-脱附测试结果和H2-TPR表明,不同的Ce0.45Zr0.45Y0.07La0.03O1.95/La-Ba-Al2O3质量比使催化剂表现出不同的织构性能和还原性能;XRD测试结果表明,OSM以均一固溶体存在,Fe高度分散在载体上.综合以上表征手段得出:合适的Ce0.45Zr0.45Y0.07La0.03O1.95/La-Ba-Al2O3质量比导致催化剂具有优异的稀薄甲烷催化燃烧活性和热稳定性.  相似文献   

16.
采用尿素-硝酸盐法制备了Sm0.5Sr0.5Co1-xCuxO3-δ(x=0~0.5)阴极材料.用TG-DSC,SEM,XRD和热膨胀仪对材料的形成过程、晶体结构、烧结体的微观结构及热膨胀性能进行了表征.用直流四端子法测试材料在500~800℃范围内的电导率.结果表明,制备样品的主晶相为正交钙钛矿结构,体系含有杂相;电导率随温度和Cu含量的变化关系表现为,x≤0.2时的样品随温度升高电导率降低,x≥0.3时随温度升高电导率增大,组成为x=0.2的样品电导率最高,500℃达到703.1 S·cm-1.材料的热膨胀系数随掺杂的Cu含量增加而降低.  相似文献   

17.
以氧化铝-金属复合材料为基质, 通过掺杂MnO2制备一种新型电解铝所用的陶瓷惰性阳极, 并对添加MnO2的阳极材料的综合性能进行了考察. 研究了MnO2对烧结性能的影响, 并对样品进行了静态腐蚀实验的研究, 测定了样品在500~1000 ℃下电导率随温度的变化. 研究结果表明, 添加MnO2有利于材料烧结且能改善材料的物化性能: 烧结样品晶粒生长完整, 致密度高; 耐高温和抗冰晶石熔盐腐蚀性能好, 平均腐蚀速率降为12.32 mm/year; 导电性能稳定、良好, 具有半导体的导电性质, 电导率随温度的升高而增大, 测得850 ℃时样品的电导率为67 S/cm.  相似文献   

18.
以尿素-硝酸盐为前驱体合成了具有钙钛矿结构的中温电解质La0.8Sr0.2Ga0.85Mg0.15O3-?(LSGM)。用DTA-TG和XRD分析了样品中钙钛矿相的形成过程。用热膨胀仪确定了LSGM的烧结温度及热膨胀系数。用交流阻抗谱研究了所获得LSGM样品的电学性能。研究结果表明:用尿素-硝酸盐合成LSGM的成相温度为1300, 1500 ℃烧结6 h可获得单相的LSGM样品。用尿素-硝酸盐合成LSGM样品的烧成温度为1485 ℃,明显低于固相法合成LSGM的烧成温度。 1500 ℃烧结6 h的LSGM样品在850 ℃时的电导率为5×10-2 S·cm-1,高于同温下钇稳定化氧化锆(YSZ)样品的电导率,表明LSGM更适合做中温SOFC的电解质材料。在30~1000 ℃的温度范围内, LSGM的膨胀系数为12.8×10-6 ℃-1。  相似文献   

19.
采用以尿素为燃料的燃烧合成法制备Ce0.8Sm0.2O1.9(SDC)氧离子导体材料, 对燃烧合成粉体的物相和显微形态进行了表征, 并研究了燃烧法合成SDC的烧结性能以及烧结体的导电性能. 研究结果表明, 采用尿素燃烧法合成SDC具有简便高效和合成粉体烧结活性高的优点. 经过燃烧过程后即可得到立方萤石结构的纯相SDC粉体, 合成粉体的分散性良好, 为50~150 nm的球形颗粒, 具有高的烧结活性, 在1250 ℃的烧结温度下, 陶瓷样品的相对密度可达到95.1%. 在600和800 ℃的测试温度下, 烧结温度为1250 ℃的陶瓷样品的电导率分别达到5.4×10-2和1.0×10-1 Ω-1·cm-1.  相似文献   

20.
制备条件对尖晶石型LiMn2O4的相行为及结构的影响   总被引:3,自引:0,他引:3  
将LiNO3和Mn3O4按不同物质的量比[x=n(Li):n(Mn)=0.50,0.52,0.54,0.58,0.62,0.70]混合,在空气气氛下,于700℃烧结得样品.实验发现,在0.52≤x≤0.70的范围内,样品均呈现出单相的尖晶石型LiMn2O4结构,晶胞参数随着x的增加而减小.将x=0.50的LiNO3和Mn3O4混合物在不同温度(300,400,500,600和700℃)下进行烧结处理.结果表明,于300℃合成得到的样品为尖晶石型LiMn2O4,随着烧结温度的升高,晶胞参数增大;当温度大于600℃时出现杂相,可以通过加入过量的Li(即x≥0.52)来加以抑制.实验结果表明,通过控制烧结温度和Li加入量可以得到理想的尖晶石型LiMn2O4单相材料.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号