首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
掺超细粉煤灰活性粉末混凝土的研究   总被引:25,自引:0,他引:25  
采用525普能硅酸盐水泥、硅灰、超细粉煤灰、高效减水剂和标准砂等原材料及湿热养护工艺,可配制出抗压强度达200MPa的活性粉末混凝土,在掺入一定量的钢纤维后,活性粉末混凝土的抗压强度近250MPa,抗折强度达45MPa,对超细粉煤灰掺量、水胶比、砂胶比和钢纤维掺量等因素于掺超细粉煤灰活性粉末混凝土抗折、抗压强度的影响进行了详细的讨论。  相似文献   

2.
为研究水胶比、减水剂和矿物掺合料掺量对超高性能混凝土(UHPC)工作性能的影响以及水胶比、矿物掺合料和钢纤维掺量对UHPC力学性能的影响,分别进行净浆流动度试验和UHPC抗折、抗压强度试验。结果表明:提高水胶比和增加粉煤灰掺量可以改善浆体的流动性,但会降低UHPC的抗折强度和抗压强度;增加矿渣粉掺量可以在改善浆体流动性的同时,提高UHPC后期的抗折强度和抗压强度;随着硅灰掺量的增加,浆体的流动性不断降低,而UHPC的抗折强度和抗压强度呈现先上升后下降的趋势,当硅灰掺量为25%时,UHPC的强度达到峰值,抗折强度和抗压强度分别提高23.7%和32.0%;钢纤维掺量的增加会提高UHPC强度,当掺入2%的钢纤维时,UHPC的抗折强度与抗压强度分别提高39.7%和59.1%。综合考虑,建议硅灰掺量在20%~30%之内为宜,矿渣粉掺量不超过30%,粉煤灰掺量不超过20%,钢纤维掺量宜取2%。  相似文献   

3.
通过常温养护条件下活性粉末混凝土力学性能正交试验,选用普通硅酸盐水泥和超细矿渣粉作为主要胶凝材料,研究了水胶比、粉煤灰掺量、硅灰掺量、石英粉掺量、胶砂比、钢纤维掺量和减水剂含量对活性粉末混凝土抗压强度和抗折强度等基本力学性能的影响。试验结果表明,水胶比、钢纤维掺量和减水剂含量对活性粉末混凝土的力学性能影响最为显著,粉煤灰掺量对改善活性粉末混凝土的抗压和抗折性能效果最好。在此基础上,以常温养护条件下活性粉末混凝土的高强度为目标,通过大量的力学试验,得到优化的最佳因素水平组合为水胶比0.18、粉煤灰掺量20%、硅灰掺量25%、石英粉掺量20%、胶砂比1∶1.0、钢纤维掺量3.0%、减水剂含量2.0%。  相似文献   

4.
利用未经淡化处理的海砂配制了超高性能混凝土(UHPC),并研究了不同水胶比、砂胶比、胶凝材料体系、钢纤维掺量、养护制度对海砂UHPC的流动度、抗压强度、抗折强度的影响。试验结果表明:海砂UHPC的最优水胶比、砂胶比和纤维体积掺量分别为0.16、1.0和1.5%,最佳的胶凝材料体系组成是水泥、降黏剂和硅灰分别70%、15%和15%,最合适的热养护制度是70℃蒸汽养护;按照上述参数配制的海砂UHPC力学性能完全符合相关标准的要求。  相似文献   

5.
针对适合3D打印施工的超高性能混凝土(UHPC)的配制及性能进行了研究,研究了硅灰、粉煤灰和矿渣粉3种掺合料的掺量、砂胶比、水胶比对UHPC流动性和抗折、抗压强度的影响,以及钢纤维对UHPC强度和单轴拉伸性能的影响.结果表明:硅灰、粉煤灰、矿渣粉的掺量分别为5%、10%、10%,砂胶比为1:0,水胶比为0.17时,制备...  相似文献   

6.
以机制砂高性能混凝土工作性能和力学性能的影响为研究对象,通过改变水胶比进行了跳桌试验、凝结时间测定试验、抗折试验和抗压试验研究,并对试验结果进行了分析、总结和归纳。试验结果表明,随着水胶比的增大,机制砂高性能混凝土体系用水量增大,流动度、初凝时间和终凝时间均增大,当水胶比从0.18增大至0.19时,流动度和初终凝时间增长的幅度更大。机制砂高性能混凝土养护后期,在水胶比为0.18、0.19时,机制砂高性能混凝土的抗折强度和抗压强度均随着水胶比的减小而增大,但由于水胶比过小,减水剂用量不足使得高性能混凝土流动性较差,在振动过程中难以使基体密实,内部存在孔洞,从而导致水胶比为0.18和0.19的抗折强度和抗压强度反而低于水胶比为0.20的抗折强度和抗压强度。通过对抗折强度和抗压强度的拟合,发现两者存在一定的相关性,抗压强度约为抗折强度的5.5倍-6倍。  相似文献   

7.
《混凝土》2016,(1)
研究了大理石粉对水泥基胶凝材料流动性、强度和干缩的影响。研究得出,大理石粉增加了水泥胶砂的流动性,大理石粉掺量越大其流动度越大。水泥胶砂1 d和3 d抗折和抗压强度随大理石粉掺量增加先增大后减小,大理石粉掺量为5%其抗折和抗压强度最大;水泥胶砂7、28、56 d抗折和抗压强度随大理石粉掺量增加而减小。水泥胶砂干缩随大理石粉掺量增加呈现先减小后增大的规律,大理石粉掺量为20%时其干缩最小。  相似文献   

8.
利用正交试验研究了水胶比、砂灰比、石英粉掺量、硅灰掺量、粉煤灰掺量和钢纤维掺量对活性粉末混凝土(RPC)抗折强度和抗压强度的影响。通过较少的试验次数获得了RPC的较佳配合比。  相似文献   

9.
测试了水胶比、减水剂掺量、钢纤维用量、微硅粉及矿粉掺量对超高强混凝土流动性、抗压强度及抗折强度的影响,对比分析了各因素影响作用的大小。结果表明:在试验范围内,水胶比、减水剂掺量及钢纤维用量对混凝土流动度及强度均有显著影响;在水胶比为0.20~0.22的情况下,掺入不低于2%的减水剂、不大于2.5%的钢纤维、4%~6%的微硅粉、10~15%的矿粉可制备得到抗压强度大于120 MPa、抗折强度大于20 MPa的自密实超高强混凝土。  相似文献   

10.
通过试验研究了掺稻壳灰的活性粉末混凝土(RPC)的配合比,根据最大密实度理论对掺稻壳灰的RPC进行了基本配合比设计;试验比较了石英砂和天然砂2种细集料对RPC性能的影响;对不同水胶比的RPC进行试验,推荐了适宜水胶比;以稻壳灰替代硅灰,试验研究不同稻壳灰替代率对RPC的流动性、强度及耐久性的影响。结果表明:采用天然砂替代石英砂作为细骨料对RPC抗折强度、抗压强度及流动度影响不大;掺稻壳灰的RPC的适宜水胶比为0.20~0.22;随着稻壳灰替代硅灰掺量的增加,其收缩率降低且随龄期增长变化减缓,同时其抗氯离子渗透性能有所下降;建议根据不同使用性能要求选择稻壳灰部分或完全替代硅灰的RPC。  相似文献   

11.
活性粉末混凝土是一种高强度、高韧性、高耐久性的超高性能混凝土.为了研究钢纤维活性粉末混凝土的最佳配合比,设置水胶比、钢纤维掺量、粉煤灰掺量、硅粉掺量和减水剂掺量5个因素在4种水平下的正交试验,并以试件的抗压强度和抗折强度为评价指标.结果表明:5个因素对活性粉末混凝土强度的影响程度依次为:水胶比、减水剂掺量、钢纤维掺量、粉煤灰掺量和硅灰掺量;活性粉末混凝土的最佳配合比为:水胶比0.2、减水剂掺量5%、钢纤维掺量2%、粉煤灰掺量0.2、硅粉掺量0.18.  相似文献   

12.
使用破碎、筛分后的废弃石屑代替石英砂作为骨料制备超高性能混凝土(UHPC)。基于单因素分析试验,研究了各因素(水胶比、胶集比、减水剂掺量、钢纤维掺量)对石屑UHPC抗压强度、抗折强度及流动度的影响规律,考查了四种不同养生方式下石屑UHPC力学性能的变化。结果表明,当胶集比、水胶比、减水剂掺量、钢纤维掺量分别为0.63、0.2、2.1%和1.5%时,石屑UHPC的力学性能和工作性能最优,7d抗压强度最高为113.7MPa,抗折强度为35.2MPa;分析应力-应变曲线发现,掺加钢纤维不仅可以提高石屑UHPC的力学强度,还能显著提高石屑UHPC的韧性和残余抗压强度;经过水浴养护、干热养护和水浴+干热组合养护后,石屑UHPC的抗压强度分别提高了5.7%、27.1%和40.3%,但热养护对抗折强度影响不大。  相似文献   

13.
活性粉末混凝土主要由水泥、硅灰和石英砂等组成,单位体积混凝土的水泥用量高,而且细集料采用磨细石英粉,致使RPC的成本更高、能耗更大。针对该问题,以钢渣粉、硅灰、矿粉等作活性细掺料,研制掺钢渣粉的RPC。研究了水胶比、砂胶比、钢渣粉及钢纤维掺量等配比参数以及养护方式对含钢渣粉RPC强度的影响,确定了含钢渣粉RPC的适宜水胶比、砂胶比以及钢纤维掺量。按这些配合比参数在一定的胶凝材料组成下,经90℃的热养护,可制备出抗压强度130 MPa以上、抗折强度20 MPa以上的含钢渣粉RPC。  相似文献   

14.
为了制备具有高流动性的高强灌浆料,进行了四因素三水平的正交试验L_(9)(3^(4)),研究了硅粉掺量、纳米二氧化硅(NS)掺量、砂胶比、水胶比对硅粉-NS灌浆料的流动度、抗折强度、抗压强度的影响。结合极差分析法,分析了各材料掺量变化对灌浆料流动度、抗折强度、抗压强度的影响程度。结果表明:与NS相比,硅粉对灌浆料早期强度的影响较大;通过优化砂胶比和水胶比,可以配制出流动度好、强度高的硅粉-NS灌浆料。  相似文献   

15.
王震宇  王俊亭  袁杰 《混凝土》2006,(6):80-82,85
研究减水剂品种及成型技术对活性粉末混凝土(RPC)强度的影响,考察水胶比、粉煤灰、硅灰、石英粉以及钢纤维掺量对RPC的抗折、抗压强度及流动度的影响规律.结果表明,采用粉煤灰替代部分水泥,可以改善RPC的流动度及强度,在热水养护下,可配制出抗压强度超过200MPa的活性粉末混凝土.  相似文献   

16.
采用干湿拌合法,将不同掺量的钢纤维掺入C40混凝土中,研究钢纤维掺量对混凝土坍落度、抗压强度和抗折强度的影响。实验结果表明:钢纤维掺量大于16 kg/m3时,混凝土坍落度随钢纤维掺量的增加明显降低,当掺量为40 kg/m3时,坍落度下降了35%;混凝土抗压强度随钢纤维掺量的增加呈先增大后减小的趋势,最佳掺量为32 kg/m3,抗压强度为57 MPa,比普通混凝土提高了20%;抗折强度随钢纤维掺量的增加而逐渐增大,并且二者有一定的线性关系,掺量为40 kg/m3时,混凝土抗折强度为8.35 MPa,比普通混凝土提高了45%。  相似文献   

17.
系统研究了掺合料掺入方式、砂胶比、纤维掺量对超高性能混凝土流动性能和力学行为的影响规律。通过二元、三元复合工业废渣,大掺量取代水泥;普通砂取代细石英砂;掺入短切钢纤维,优化基体组成,在普通成型和标准养护条件下,制备出了抗压强度200MPa的生态型超高性能混凝土(ECO-UHPC)。研究表明:配比为50%水泥、10%硅灰、10%粉煤灰、30%矿渣,胶砂比1:1.2,纤维体积掺量3%优于其它配比,抗压强度达到200MPa,抗折强度达到55MPa。本研究以期对生态型超高性能混凝土(ECO-UHPC)的实际工程应用有参考和指导作用。  相似文献   

18.
采用粉煤灰(F)、矿渣粉(Sl)、硅灰(Si)和石灰石粉(L)复合组成5种复合矿物掺合料,研究了复合掺合料的组成和掺量对水泥胶砂流动度、长期抗压强度和抗折强度的影响。结果表明:掺粉煤灰和石灰石粉的FSlL和FL复合掺合料流动性较好,流动度比达到110%以上;掺硅灰的FSlSi和SlSiL复合掺合料流动性较差,流动度比在80%左右;5种复合掺合料在30%、40%、50%掺量下,胶砂试件720 d抗压强度和抗折强度均达到纯水泥试件的110%~120%;FSlSi、FSl和FL复合掺合料随着掺量的提高,长龄期胶砂抗压强度有所增加,抗折强度发展趋势与抗压强度相同;SlL和SlSiL复合掺合料随着掺量的提高,长龄期胶砂抗压和抗折强度均略有下降。  相似文献   

19.
设置了5种聚羧酸减水剂掺加水平(0、0.1%、0.2%、0.3%、0.5%)和2种水胶比(0.35、0.44),对聚羧酸减水剂掺量和水胶比对低钙粉煤灰胶砂的抗折强度和抗压强度的影响进行了试验研究。研究结果表明在低钙粉煤灰胶砂中适当掺加聚羧酸减水剂,可以提高试件的抗折强度和抗压强度,聚羧酸减水剂掺量0.3%的低钙粉煤灰胶砂的力学性能较优异;水胶比对低钙粉煤灰胶砂的抗折强度和抗压强度有重要影响,试件的抗折强度和抗压强度随着水胶比的增大而降低。  相似文献   

20.
通过改变水胶比、石英粉、石英砂等的掺量,研究了不同配合比活性粉末混凝土流动度、强度的变化规律.讨论了超细钢纤维、短切碳纤维不同掺量对活性粉末混凝土强度及电阻率的影响.结果表明:0.23水胶比的活性粉末混凝土,3d热养护抗压强度为181.97 MPa,抗折强度为30.14 MPa,工作性良好;活性粉末混凝土的电阻率随纤维掺量增加而不同程度减小.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号