首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 312 毫秒
1.
夏少杰  陈俊 《红外》2021,42(1):1-5
为了实现高灵敏度探测,红外探测器需要得到优化。利用Silvaco器件仿真工具研究了p--i--n型InP/In0.53Ga0.47As/In0.53Ga0.47As光电探测器的结构,并模拟了该结构中吸收层浓度和台阶宽度对暗电流以及结电容的影响。结果表明,随着吸收层掺杂浓度的逐渐增大,器件的暗电流逐渐减小,结电容逐渐增大。当台阶宽度变窄时,器件的暗电流随之减小,结电容也随之变小。最后研究了光强和频率对器件结电容的影响。在低光强下,器件的结电容基本不变;当光强增大到1 W/cm2时,器件的结电容迅速增大。器件的结电容随频率的升高而减小,其峰值由缺陷能级引起。  相似文献   

2.
建立了不同结构的InP基PIN型In0.53Ga0.47As探测器光响应的物理模型.通过引入收集效率函数,模拟计算了探测器量子效率和光响应.采用该模型分别研究了正面进光和背面进光情况下典型的In0.53Ga0.047As/InP PIN探测器的结构参数对器件量子效率的影响.在此基础上提出了两种改进的背照射InGaAs/InP探测器结构,并讨论了其结构参数的优化.  相似文献   

3.
首次介绍了采用AlN介质薄膜为钝化层的InGaAs台面型探测器(λ=2.4 μm).探测器采用分子束外延(MBE)方法生长的原位掺杂的PIN In0.78Ga0.22As/In0.78Ga0.22As/InxGa1-xAs/InP 外延材料.由于台面型器件的裸露面积较大,特另q是台面的成形工艺所带来的侧面损伤,加大了光生载流子的表面复合,使器件的暗电流、噪声等性能急剧下降.采用新的AlN钝化工艺,制备了8元正照射台面InGaAs探测器,室温下(T=300 K)电压为-0.5 V时.探测器的暗电流(ID)约为9×10-8 A,优值因子(R0A)大于30 Ωcm2,通过与其他钝化工艺所制备的器件的性能进行分析对比得出:AlN能有效地改善器件的表面状态,减小表面复合,从而降低了暗电流,提高了探测器的性能.  相似文献   

4.
李永富 《光电子.激光》2009,(12):1580-1583
采用闭管扩散方式,利用SiO2及Si3N4扩散掩膜在NIN型InP/In0.53Ga0.47As/InP外延材料上制备了两种不同的平面型InGaAs红外探测器,研究了室温下不同扩散区面积的两种器件的正向I-V特性及反向暗电流密度与器件周长面积比的关系,结果表明,扩散区边缘的钝化是平面型InGaAs探测器的制备过程中非常重要的一环,而且Si3N4薄膜的钝化效果优于SiO2薄膜。室温下和-0.1V偏压下,采用Si3N4扩散掩膜的器件的暗电流密度约为20nA/cm2。  相似文献   

5.
InGaAs PIN光电探测器的暗电流特性研究   总被引:13,自引:2,他引:11  
从理论上分析了In0.53Ga0.47As PIN光电探测器在不同掺杂浓度及反向偏压下的暗电流特性,并与研制的器件的实测结果进行了比较和讨论.模拟结果表明:在低偏压下,器件中的产生复合电流起主要作用,偏压增大时,隧道电流起主要作用,且In0.53Ga0.47As光吸收层的载流子浓度对器件的暗电流有很大的影响,实测器件特性与模拟结果完全符合.文中还对器件结面积和电极尺寸等对暗电流的影响进行了比较和分析.  相似文献   

6.
利用MOCVD在InP衬底上制备InP/In0.53Ga0.47As/InP双异质结PIN型材料,通过对本征层In0.53Ga0.47As材料的光致荧光谱研究,发现PIN结构中两侧InP材料的掺杂特性对中间In0.53Ga0.47As材料的光致发光特性有明显的影响。本文通过对两侧InP材料的变掺杂处理,实现了In0.53Ga0.47As材料光致发光特性的有效提高。  相似文献   

7.
田招兵  张永刚  李爱珍  顾溢 《半导体光电》2006,27(5):519-521,542
采用气态源分子束外延(GSMBE)生长技术结合常规半导体工艺制成了正进光台面型8元In0.53Ga0.47As/InP光伏探测器阵列,并对其特性进行了测量,结果表明GSMBE生长的材料具有很好的均匀性.探测器阵列在室温下具有良好的性能,在-10 mV反偏下探测器的暗电流约173 pA,单元间的相对标准差为1.3%;器件的峰值探测率为4.7×1011 cm·Hz1/2/W,单元间的相对标准差为0.9%.  相似文献   

8.
气态源分子束外延生长扩展波长InGaAs探测器性能分析   总被引:3,自引:3,他引:0  
从理论与实验两方面对截止波长为1.7μm(x=0.53),1.9μm(x=0.6)和2.2μm(x=0.7)p in InxGa1-xAs探测器性能进行了研究.对探测器暗电流的研究结果表明,扩展波长In0.6Ga0.4As,In0.7Ga0.3As探测器在反向偏置低压区,欧姆电流占据主导地位;在反向偏置高压区,缺陷隧穿电流占主导地位;且扩展波长In0.6Ga0.4As,In0.7Ga0.3As探测器的暗电流比In0.53Ga0.47As探测器增加较大.对探测器R0A随温度及i层载流子浓度变化关系的研究结果表明,在热电制冷温度下探测器性能可得到较大提高,i层的轻掺杂可使探测器的R0A得到改善.  相似文献   

9.
王琦  任晓敏  熊德平  周静  吕吉贺  黄辉  黄永清  蔡世伟 《光电子.激光》2007,18(10):1143-11,451,149
借助超薄低温InP缓冲层,在GaAs衬底上生长出了高质量的InP外延层,在InP外延层中插入了15周期In0.93Ga0.07P/InP应变层超晶格(SLS),进一步阻断了失配位错穿透到晶体表面,提高了外延层的晶体质量,这样2.5 μm厚InP外延层的双晶X射线衍射(DCXRD)ω扫描半高全宽(FWHM)值降低至219 arcsec,该InP外延层的室温光荧光(PL)谱线宽度仅为42 meV.在此基础上,只利用超薄低温InP缓冲层技术就在半绝缘GaAs衬底上成功地制备出了长波长异变In0.53Ga0.47As PIN光电探测器,器件的台面面积为50 μm×50 μm,In0.53Ga0.47As吸收层厚度为300 nm,在3 V反偏压下器件的3 dB带宽达到了6 GHz,在1 550 nm波长处器件的响应度达到了0.12 A/W,对应的外量子效率为9.6%.  相似文献   

10.
建立了SACM型In0.53Ga0.47As/In0.52Al0.48As雪崩光电二极管(APD)的分析模型,通过数值研究和理论分析设计出高性能的In0.53Ga0.47As/In0.52Al0.48As APD。器件设计中,一方面添加了In0.52Al0.48As势垒层来阻挡接触层的少数载流子的扩散,进而减小暗电流的产生;另一方面,雪崩倍增区采用双层掺杂结构设计,优化了器件倍增区的电场梯度分布。最后,利用ATLAS软件较系统地研究并分析了雪崩倍增层、电荷层以及吸收层的掺杂水平和厚度对器件电场分布、击穿电压、IV特性和直流增益的影响。优化后APD的单位增益可以达到0.9 A/W,在工作电压(0.9 Vb)下增益为23.4,工作暗电流也仅是纳安级别(@0.9 Vb)。由于In0.52Al0.48As材料的电子与空穴的碰撞离化率比InP材料的差异更大,因此器件的噪声因子也较低。  相似文献   

11.
The avalanche multiplication and impact ionization coefficients in In/sub 0.53/Ga/sub 0.47/As p-i-n and n-i-p diodes over a range of temperature from 20-400 K were measured and shown to have negative temperature dependence. This is contrary to the positive temperature dependence of the breakdown voltage measured on InP/In/sub 0.53/Ga/sub 0.47/As heterojunction bipolar transistors (HBTs) in this and previous works. It is shown that the collector-base dark current and current gain can be the overriding influence on the temperature dependence of breakdown in InP/In/sub 0.53/Ga/sub 0.47/As HBTs and could explain previous anomalous interpretations from the latter.  相似文献   

12.
从 3个层面研究了分子束外延 Al0 .48In0 .52 As/ Ga0 .47In0 .53As/ In P功率 HEMT结构材料生长技术。首先 ,通过观察生长过程的高能电子衍射 (RHEED)图谱 ,确立了 Ga0 .47In0 .53As/ In P结构表面层的 MBE RHEED衍射工艺相图 ,据此生长的单层 Si-doped Ga0 .47In0 .53As(40 0 nm) / In P室温迁移率可达 6960 cm2 / V· s及电子浓度 1 .3 3 E1 7cm- 3。其次 ,经过优化结构参数 ,低噪声 Al0 .48In0 .52 As/ Ga0 .47In0 .53As/ In P HEMT结构材料的 Hall参数达到μ30 0 K≥ 1 0 0 0 0 cm2 / V· s、2 DEG≥ 2 .5 E1 2 cm- 2 。最后 ,在此基础之上 ,降低 spacer的厚度、在 Ga0 .47In0 .53As沟道内插入 Si平面掺杂层并增加势垒层的掺杂浓度获得了功率 Al0 .48In0 .52 As/ Ga0 .47In0 .53As/ In PHEMT结构材料 ,其 Hall参数达到μ30 0 K≥ 80 0 0 cm2 / V· s、2 DEG≥ 4 .0 E1 2 cm- 2 。  相似文献   

13.
利用分子束外延技术研制出InP基IhAs/In0.53Ga0.47As/AlAs共振隧穿二极管,其中势垒为10个单分子AlAs,势阱由8个单分子层In0.53Ga0.47As阱和4个单分子层InAs子阱组成.室温下峰值电流密度接近3kA/cm2,峰和谷的电流密度比率达到19.  相似文献   

14.
We describe p-i-n photodiodes fabricated from In0.53Ga0.47As grown lattice-matched on InP substrates. These diodes exhibit low junction capacitance (C<1 pF at 20 V reverse bias), low dark current (?10 nA), high break-down voltage (110 V) and wide photoresponse extending beyond 1.7 ?m.  相似文献   

15.
Ga0.47In0.53As/InP heterophotodiodes are demonstrated with a bandwidth greater than 2 GHz, less than 0.5 pF capacitance, and subnanoampere dark current at the operating bias. These photodiodes satisfy criteria for both low noise and high speed in the 1 MHz?2 GHz bit-rate range for optical fibre telecommunications  相似文献   

16.
报道了InP衬底AlAs /In0.53Ga0.47As/AlAs结构共振隧穿二极管(RTD)的研制过程.衬底片选用(001)半绝缘InP单晶片,结构材料使用分子束外延(MBE)技术制备,并用PL谱对外延片进行测试,器件采用台面结构.测得RTD器件室温下的峰谷电流比(PVCR)为7.4,峰值电流密度(Jp)为1.06×105A/cm-2,是国内首例成功的InP材料体系RTD.  相似文献   

17.
串音与焦平面阵列(FPA)的灵敏度和分辨率密切相关。用模拟的方法定量地计算了In0.53Ga0.47As/InP 探测器焦平面阵列的电串音随光波波长、入射方向和台面的刻蚀深度的变化情况。结果显示:台面结构的器件的串音抑制性能比平面结构的要好;由于材料吸收深度和异质结耗尽层宽度的影响,短波长的光的串音比长波长要小,正照射的串音比背照射要小;另外,当台面的刻蚀深度穿透吸收层厚度时,其电串扰几乎完全被抑制。研究结果提出了相应的InGaAs FPA的低串音设计。  相似文献   

18.
报道了InP衬底AlAs/In0.53Ga0.47As/AlAs两垒一阱结构共振隧穿二极管(RTD)器件的研制.结构材料由分子束外延制备,衬底片为(001)半绝缘InP单晶片,器件制作选用台面结构.测得室温下的峰值电流密度为1.06×105 A/cm2,峰-谷电流比为7.4,是国内报道的首例InP材料体系RTD器件.  相似文献   

19.
用液相外廷获得了与InP晶格匹配的Ga_(0.47),In_(0.53)As单晶外延层.本文叙述在(100)和(111)InP衬底上Ga_(0.47)In_(0.53)As/InP液相外延生长方法.用常规滑动舟工艺生长的这种外延层,其表面光亮,Ga的组分x=0.46~0.48,晶格失配率小于2.77×10~(-4),禁带宽度E_g=0.74~0.75eV.使用这种Ga_(0.47)In_(0.53)As/InP/InP(衬底)材料研制的长波长光电探测器,在波长为0.9~1.7μm范围内测出了光谱响应曲线,在1.55μm处呈现峰值.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号