首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have presented the synthesis and characterization of three new bromo substituted stilbene derivatives,p-3,4,5-trimethoxy-p'- 2,3,4,5,6-pentabromostilbene(C1),p-N,N-dimethylamino-p'-2,3,4,5,6-pentabromostilbene(C2) and p-N,N-diphenylamino-p'- 2,3,4,5,6-pentabromostilbene(C3) in this letter.The UV/vis absorption and photoluminescence were investigated in various solvents.The maximal absorption wavelength of C1 exhibited blue-shift to those of C2 and C3 in different solvents.No florescence emission could...  相似文献   

2.
A method for the fluorometry of singlet oxygen (1O2) using less fluorescent folic acid and its analogue, methotrexate (MTX), was examined. Folic acid and MTX were decomposed into a strongly fluorescent pteridine compound via a photosensitized reaction by 1O2-generating photosensitizers in a deuterium oxide solution. The fluorescence intensity increased in proportion to the irradiation time or the number of photons absorbed by the photosensitizer. This method using the fluorescence enhancement of these folic acid analogues can be applied to determine the quantum yield of 1O2 generated through a photosensitized reaction in deuterium oxide. The background fluorescence of MTX is quite smaller than that of folic acid, indicating that MTX can be used for the more sensitive detection of 1O2. Figure (DOC 37.0 KB)  相似文献   

3.
The kinetic booster effect of dimethylsulfoxide on the chemical generation of singlet oxygen, 1O2, from the disproportionation of hydrogen peroxide catalyzed by molybdate ions in methanol has been evidenced by detection of the IR luminescence of 1O2 at 1270 nm and by 95Mo NMR spectroscopy. DMSO interacts rapidly, through a direct oxygen transfer with the stable tetraperoxomolybdate , leading to DMSO2 and to the unstable triperoxomolybdate , which releases 1O2. The procedure was applied to accelerate the dark singlet oxygenation of β-citronellol and α-terpinene.  相似文献   

4.
The design of supramolecular system s with efficient singlet oxygen generation has attracted considerable interests.Herein,an AIE-based singlet oxygen generation system with chemiluminescence properties is reported in aqueous media based on supramolecular host-guest assembly between a water-soluble pillar[5]arene(WP5) and an AIE photosensitizer(TPEDM).The formed supramolecular nanoparticles exhibit significant singlet oxygen generation ability as well as enhanced fluorescence.In addition,by introducing catalase,this H_2 O_2-responsive supramolecular system shows increased ~1 O_2 generation efficiency compared with the blank nanoparticles.An efficient chemiluminescence system can also be achieved by entrapping an energy donor adamantane derivative(AMPPD).Moreover,the present system can function as nanoreactors to perform the photooxidation of dopamine to form polydopamine with visible light irradiation.This wo rk provides a new strategy for the construction of ~1 O_2 generation system based on supramolecular nanomaterials,which has potential applications in the fields such as chemiluminescence imaging and controlled photocatalysis.  相似文献   

5.
6.
Silicon phthalocyanines and silicon naphthalocyanines, which are two derivatives in the family of hematoporphyrin, have been synthesized to assess their potential as photosensitizers for photodynamic therapy. For these complexes the red shift of their Q-band maximum absorption tends to depend on the nature of the axial substituent. The bimolecular rate coefficients for the interacting between photosensitizer, either SiNC or SiPC, and generated singlet molecular oxygen were determined from the time-resolved emission spectrum of singlet oxygen at 1.27 μm. On the basis of these data the electron-transfer quenching mechanism is discussed in relation to the Marcus model.  相似文献   

7.
The chemistry of singlet oxygen with a variety of arylphosphines has been studied. Rates of singlet oxygen removal by para-substituted arylphosphines show good correlation with the Hammett σ parameter (ρ=−1.53 in CDCl3), and with the Tolman electronic parameter. The only products for the reactions of these phosphines with singlet oxygen are the corresponding phosphine oxides. Conversely, for ortho-substituted phosphines with electron-donating substituents, there are two products, namely a phosphinate formed by intramolecular insertion and phosphine oxide. Kinetic analyses demonstrate that both products are formed from the same intermediate, and this allows determination of the rate ratios for the competing pathways. Increasing the steric bulk of the phosphine leads to an increase in the amount of insertion product. VT NMR experiments show that peroxidic intermediates can only be detected for very hindered and very electron-rich arylphosphines.  相似文献   

8.
Singlet oxygen, 1O2, generating compounds are highly useful for photodynamic therapy or organic oxidative transformations. In this work, the synthesis and photochemical performances for singlet oxygen generation of a range of oxoporphyrinogen-containing porous coordination polymers (OxP-PCPs) are reported. Oxoporphyrinogens, a previously unreported class of singlet oxygen generators derived from the oxidation of the antioxidant-substituted porphyrin tetrakis(3,5-di-tert-butyl-4-hydroxyphenyl)porphyrin, were converted to molecular tectons by the introduction of oligophenylene-carboxylate linkers and incorporated into porous coordination polymers using well-known oxo-Zr(IV)6 cluster chemistry. Their structures and textural properties were analyzed revealing substantial surface areas up to 650 m2 g?1 for the optimum linker length (biphenylyl). The oxoporphyrinogen precursors exhibit good quantum yields of singlet oxygen generation (up to Φ = 0.37), and a high level of activity is maintained in the resulting coordination polymers, which appear to be superior for singlet oxygen generation to the precursors and to a reported reference material. These OxP-PCP materials were applied for the selective oxidation of sulfides to sulfoxides. This work demonstrates that the excellent singlet oxygen generator oxoporphyrinogens can be successfully incorporated as porous solids and conveniently applied in heterogeneous oxidative transformations.  相似文献   

9.
Recently, photodynamic therapy (PDT) has been extensively applied in clinical and coadjuvant treatment of various kinds of tumors. However, the photosensitizer (PS) of PDT still lack of high production of singlet oxygen (1O2), low cytotoxicity and high biocompatibility. Herein, we propose a facile method for establishing a new core-shell structured Sn nanocluster@carbon dots (CDs) PS. Firstly, Sn4+@S-CDs complex is synthesized using the sulfur-doped CDs (S-CDs) and SnCl4 as raw materials, and subsequently the new PS (Sn nanocluster@CDs) is obtained after vaporization of Sn4+@S-CDs solution. Remarkably, the obtained Sn nanocluster@CDs show an enhanced fluorescence as well as a higher 1O2 quantum yield (QY) than S-CDs. The high 1O2 QY (58.3%) irradiated by the LED light (400–700 nm, 40 mW/cm2), induce the reduction of 4T1 cancer cells viability by 25%. More intriguingly, no visible damage happens to healthy cells, with little impact on liver tissue due to renal excretion, both in vitro and in vivo experiments demonstrate that Sn nanocluster@CDs may become a promising PS, owning a high potential for application in PDT.  相似文献   

10.
《中国化学快报》2020,31(10):2784-2788
Efficient generation of singlet oxygen (1O2) by an excitonic energy transfer process is highly desired on a semiconductor photocatalyst for selective oxidation of methyl phenyl sulfide (MPS). Herein, it is demonstrated that a large amount of 1O2 is produced on pristine graphitic carbon nitride (CN) nanosheet compared with bismuth oxybromide (BiOBr) and commercial P25 titanium dioxide (TiO2). This leads to a certain photoactivity of CN for MPS oxidation. The observed ∼77% selectivity for CN depends on the competitive results of excitonic energy transfer for 1O2 formation and charge carrier separation for superoxide radical (O2) production, which are based on the phosphorescence spectra and electron paramagnetic resonance signals, respectively. Moreover, ultrathin CN nanosheets are synthesized by thermal treatment with the cyanuric acid-melamine hydrogen bonded aggregates as precursors. It is confirmed that the amount of produced 1O2 could be increased by decreasing the thickness of resultant CN nanosheets. The optimized ultrathin CN nanosheet (∼4 nm) exhibits excellent photoactivity with high selectivity (∼99%). It is suggested that the excitonic energy transfer for 1O2 formation is close related to the intrinsic exciton binding energy and the two-dimensional quantum confinement effect. This work establishes a basic mechanistic understanding on the excitonic processes in CN, and develops a feasible route to design CN-based photocatalysts for efficient 1O2 generation.  相似文献   

11.
Singlet oxygen was generated by reaction of sodium hypochlorite and hydrogen peroxide in a micro-channel. The two reagent solutions were delivered into the micro-channel by syringe pumps, providing a laminar flow. Such a laminar flow forms a liquid–liquid interface instantly in a micro-channel, and then the interface collapses gradually through molecular diffusion with the residence times. The chemiluminescence from the singlet oxygen was emitted in the course of the collapse of the interface under laminar flow condition. The chemiluminescence intensity was observed continuously and stably in the micro-channel as long as the reagents were fed into the channel. We examined the features of the chemiluminescence emitted in the micro-channel by changing the flow rates of reagents and the detection points in the micro-channel. The data obtained were considered along with the residence times and diffusion lengths. We also examined the effects of antioxidants, such as sodium azide, histidine, nitroblue tetrazolium, and 2-propanol on the chemiluminescence intensity.  相似文献   

12.
A new tetrathiafulvalene-anthracene dyad 1 with two “tetraethylene glycol” units was synthesized and characterized. Strong chemiluminescence was observed upon reaction of dyad 1 with singlet oxygen (1O2), and this reaction shows fairly good selectivity toward 1O2 over other reactive oxygen species. Due to the introduction of two hydrophilic “tetraethylene glycol” units, the detection of 1O2 with dyad 1 can be performed in alcohol/water solution, which is relatively a mild medium when compared with water/tetrahydrofuran solution required by other tetrathiafulvalene-anthracene dyads. Dyad 1 may have a wider use for detection of 1O2 in biological systems.  相似文献   

13.
We developed the detection apparatus that equipped with the two-photomultiplier tubes for chemiluminescence from singlet oxygen. Singlet oxygen was generated with reaction between sodium hypochlorite and hydrogen peroxide. The chemiluminescence from singlet oxygen, the dimol light emission (ca. 634 nm) and the monomol light emission (ca. 1270 nm), was observed simultaneously for the same reaction cell. The effects of sodium azide as an antioxidant, human serum albumin, and α-amino acids on the chemiluminescence based on the both emissions were examined; the observed chemiluminescence could provide direct information with regard to the reaction between singlet oxygen and antioxidant/biomolecules. The apparent rate constants for quenching singlet oxygen in the presence of human serum albumin were calculated to be ca. 3.3 × 109 and ca. 8.8 × 108 M−1 s−1 for the dimol and monomol light emissions, respectively, under the present conditions. The chemiluminescence intensities of the dimol emission decreased in the presence of His, Asp, Phe, Ser, and Tyr, and that of the monomol decreased in the presence of Cys and Trp. The chemiluminescence observed in the presence of biomolcules was discussed together with the reactivities of sodium hypochlorite and hydrogen peroxide to biomolecules.  相似文献   

14.
《中国化学快报》2021,32(9):2837-2840
The aerobic, selective oxidation of hydrocarbons via CH bond activation is still a challenge. This work shows the achievement of the room temperature visible light driven photocatalytic activation of benzylic CH bonds with N-hydroxysuccinimide over BiOBrxI1-x (0 ≤ x ≤ 1) solid solutions, whose valance bands were engineered through varying the ratio of bromide to iodide. The optimal BiOBr0.85I0.15 catalyst exhibited over 98% conversion ratio of ethylbenzene, which was about 3.9 and 8.9 times that of pure BiOBr and BiOI, respectively. The excellent photocatalytic activity of BiOBr0.85I0.15 solid solution can be ascribed to the orbital hybridization of the valence band containing both Br 4p and I 5p orbitals, which could promote photo-induced charge carrier separation and improve the generation of singlet oxygen. This work shed some light on the rational design of photocatalysts for targeted organic transformation.  相似文献   

15.
Mariza N. Alberti 《Tetrahedron》2006,62(46):10660-10675
The factors that control the stereochemistry of sensitized photooxygenation of alkenes via singlet oxygen (ene reaction) are selectively reported. We also introduce our most recent stereoelectronic effects on the singlet oxygen-ene reaction. The origin of site selectivity and solvent-dependent stereoselectivity in this classical ene reaction with simple as well as functionalized alkenes is highlighted. These studies and other similar studies have enhanced substantially the utility of singlet oxygen in the synthesis of natural and non-natural products.  相似文献   

16.
Dyads of a N-confused porphyrin (NCP) moiety covalently linked to a porphyrin free-base (H2P) or a zinc(II) porphyrinate (ZnP) moiety via a flexible alkyl chain of variable length have been synthesized. Photoluminescence study demonstrated an efficient excitation energy transfer from H2P/ZnP moiety to the NCP moiety. Measurement of the near-IR emission of singlet oxygen produced by these dyads via photosensitization showed that the NCP-ZnP dyads (ФΔ = (0.61-0.65) ± 0.13) were better 1O2 generators than the NCP-P dyads (ФΔ = (0.36-0.41) ± 0.08).  相似文献   

17.
Photooxidation, an important component of polymer weathering, involves excited polymer-inherent chromophores and photoactive additives and impurities. Quenching of excited species by ground state molecular oxygen, the common component of air, results in the formation of singlet state molecular oxygen 1O2. This active form of oxygen is a strong oxygenation agent attacking stabilized polymers. Resulting transformations of the polymer matrix and additives have a negative effect on the service life of the material. The formation of 1O2, its properties, and reactions and products arising from stabilizers are outlined.  相似文献   

18.
The pyrrole-amino acid and peptide N-conjugates synthesized from tyrosine, histidine and glutathione very effectively quench the 1270 nm singlet oxygen luminescence, at rates ranging from 108 to 109 M−1 s−1. Nuclear magnetic resonance spectroscopy suggests that the electron-donating properties of the methyl groups after 2,5-dimethyl substitution on the pyrrole ring are probably an important determinant of the reactivity of singlet oxygen with the N-conjugate of glutathione. However, intramolecular interactions between the pyrrole ring and the side chain may also modulate the reactivity of the antioxidant as suggested by absorption and fluorescence spectroscopies carried out on tyrosine derivatives. Efficient fluorescence quenching of the phenol ring by the pyrrole ring occurs in the tyrosine derivatives. The reactivities of these antioxidants with 1O2 are comparable in methanol, ethanol and D2O.  相似文献   

19.
Singlet oxygen generation ability of squarylium cyanine dyes   总被引:1,自引:0,他引:1  
The quantum yields for singlet oxygen generation of several squarylium cyanine dyes derived from benzothiazole, benzoselenazole and quinoline, displaying absorption within the so-called “phototherapeutic window” (600–1000 nm), were determined, envisioning their potential usefulness for photodynamic therapy (PDT). The determination was performed by a direct method measuring the luminescence decay of the dyes in the near infrared. Considering the absorption and the quantum yields displayed by some of the dyes, these seemed to be potential candidates as sensitizers for PDT.  相似文献   

20.
An efficient synthetic method has been developed for the synthesis of 2-arylacrylic esters from the corresponding aryl methyl ketones via Wittig reaction and singlet oxygen ene reaction. Wittig reaction to aryl methyl ketones with (methoxymethyl)triphenylphosphonium chloride in basic condition afforded the methyl enol ethers, and then 2-arylacrylic esters were obtained by singlet oxygen ene reaction, followed by tosylation and elimination in one-pot to the methyl enol ethers in good yields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号