首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 0 毫秒
1.
In this paper, we propose a new approach for face representation and recognition based on Adaptively Weighted Sub-Gabor Array (AWSGA) when only one sample image per enrolled subject is available. Instead of using holistic representation of face images which is not effective under different facial expressions and partial occlusions, the proposed algorithm utilizes a local Gabor array to represent faces partitioned into sub-patterns. Especially, in order to perform matching in the sense of the richness of identity information rather than the size of a local area and to handle the partial occlusion problem, the proposed method employs an adaptively weighting scheme to weight the Sub-Gabor features extracted from local areas based on the importance of the information they contain and their similarities to the corresponding local areas in the general face image. An extensive experimental investigation is conducted using AR and Yale face databases covering face recognition under controlled/ideal condition, different illumination condition, different facial expression and partial occlusion. The system performance is compared with the performance of four benchmark approaches. The promising experimental results indicate that the proposed method can greatly improve the recognition rates under different conditions.  相似文献   

2.
One of the main challenges faced by the current face recognition techniques lies in the difficulties of collecting samples. Fewer samples per person mean less laborious effort for collecting them, lower cost for storing and processing them. Unfortunately, many reported face recognition techniques rely heavily on the size and representative of training set, and most of them will suffer serious performance drop or even fail to work if only one training sample per person is available to the systems. This situation is called “one sample per person” problem: given a stored database of faces, the goal is to identify a person from the database later in time in any different and unpredictable poses, lighting, etc. from just one image. Such a task is very challenging for most current algorithms due to the extremely limited representative of training sample. Numerous techniques have been developed to attack this problem, and the purpose of this paper is to categorize and evaluate these algorithms. The prominent algorithms are described and critically analyzed. Relevant issues such as data collection, the influence of the small sample size, and system evaluation are discussed, and several promising directions for future research are also proposed in this paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号

京公网安备 11010802026262号