首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Ultrafiltration (UF) fouling has been attributed to concentration polarization, gel layer formation as well as outer and inner membrane pore clogging. It is believed that mass of humic materials either retained on membrane surface or associated with membrane inner pore surface is the primary cause for permeate flux decline and filtration resistance build-up in water supply industries. While biofilm/biofouling and inorganic matter could also be contributing factors for permeability decline in wastewater treatment practices. The present study relates UF fouling to mass of dissolved organic matter (DOM) retained on membrane and quantifies the effect of retained DOM mass on filtration flux decline. The results demonstrate that larger pore membranes exhibit significant flux decline in comparison with the smaller ones. During a 24-h period, dissolved organic carbon mass retained in 10 kDa membranes was about 1.0 g m−2 and that in 100 kDa membranes was more than 3 times higher (3.6 g m−2). The accumulation of retained DOM mass significantly affects permeate flux. It is highly likely that some DOMs bind or aggregate together to form surface gel layer in the smaller 10 kDa UF system; those DOMs largely present in inner pore and serving as pore blockage on a loose membrane (100 kDa) are responsible for severe flux decline.  相似文献   

2.
Ang WS  Elimelech M 《Water research》2008,42(16):4393-4403
Effluent organic matter (EfOM) contributes significantly to organic fouling of reverse osmosis (RO) membranes in advanced wastewater reclamation. In this study, the effect of feed solution chemistry (solution pH and Ca2+ concentration) on the fouling of RO membranes by octanoic acid—selected to represent fatty acids in EfOM—is investigated. Crossflow fouling experiments demonstrate that RO membrane fouling is much more significant at solution pH below the pKa of the octanoic acid (pKa = 4.9) than at an elevated pH. Octanoic acid permeates across the membranes more readily at solution pH below its pKa than at elevated pH. At pH below the octanoic acid pKa, fouling behavior is not affected by calcium ions, whereas at elevated pH, the rate of flux decline decreases with higher calcium ion concentration. The effect of calcium on the fouling behavior was further verified from foulant-foulant adhesion forces, determined by atomic force microscopy (AFM) force measurements under solution chemistries identical to those of the crossflow fouling experiments. To investigate the implications of octanoic acid fouling for wastewater reclamation, the effect of octanoic acid on membrane fouling by a combination of organic foulants in the presence of calcium ions is studied. At a solution chemistry simulating that of typical wastewater effluents, the addition of octanoic acid to a feed solution containing alginate, bovine serum albumin, and Suwannee River natural organic matter, does not enhance membrane fouling behavior. This observation could be attributed to the significant contribution of the alginate-calcium complexes within the fouling layer to the total membrane resistance.  相似文献   

3.
Lee N  Amy G  Croué JP  Buisson H 《Water research》2004,38(20):4511-4523
An understanding of natural organic matter (NOM) as a membrane foulant and the behavior of NOM components in low-pressure membrane fouling are needed to provide a basis for appropriate selection and operation of membrane technology for drinking water treatment. Fouling by NOM was investigated by employing several innovative chemical and morphological analyses.

Source (feed) waters with a high hydrophilic (HPI) fraction content of NOM resulted in significant flux decline. Macromolecules of a relatively hydrophilic character (e.g. polysaccharides) were effectively rejected by low-pressure membranes, suggesting that macromolecular compounds and/or colloidal organic matter in the hydrophilic NOM fraction may be a problematic foulant of low-pressure membranes. Moreover, the significant organic fouling that is contributed by polysaccharides and/or proteins in macromolecular and/or colloidal forms depends on molecular shape (structure) as well as size (i.e. molecular weight). More significant flux decline was observed in microfiltration (MF) compared to ultrafiltration (UF) membrane filtration. MF membrane fouling may be caused by pore blockage associated with large (macromolecular) hydrophilic molecules and/or organic colloids. In the case of UF membranes, the flux decline may be caused by sequential or simultaneous processes of surface (gel layer) coverage during filtration. Morphological analyses support the notion that membrane roughness may be considered as a more important factor in membrane fouling by controlling interaction between molecules and the membrane surface, compared to the hydrophobic/hydrophilic character of membranes. Membrane fouling mechanisms are not only a function of membrane type (MF versus UF) but also depend on source (feed) water characteristics.  相似文献   


4.
Sim LN  Ye Y  Chen V  Fane AG 《Water research》2011,45(4):1639-1650
Understanding the foulant deposition mechanism during crossflow filtration is critical in developing indices to predict fouling propensity of feed water for reverse osmosis (RO). Factors affecting the performance on different fouling indices such as MFI-UF constant pressure, MFI-UF constant flux and newly proposed fouling index, CFS-MFIUF were investigated. Crossflow Sampler-Modified Fouling Index Ultrafiltration (CFS-MFIUF) utilises a typical crossflow unit to simulate the hydrodynamic conditions in the actual RO units followed by a dead-end unit to measure the fouling propensity of foulants. CFS-MFIUF was found sensitive to crossflow velocity. The crossflow velocity in the crossflow sampler unit influences the particle concentration and the particle size distribution in its permeate. CFS-MFIUF was also found sensitive to the permeate flux of both CFS and the dead-end cell. To closely simulate the hydrodynamic conditions of a crossflow RO unit, the flux used for CFS-MFIUF measurement was critical. The best option is to operate both the CFS and dead-end permeate flux at flux which is normally operated at industry RO units (∼20 L/m2 h), but this would prolong the test duration excessively. In this study, the dead-end flux was accelerated by reducing the dead-end membrane area while maintaining the CFS permeate flux at 20 L/m2 h. By doing so, a flux correction factor was investigated and applied to correlate the CFS-MFIUF measured at dead-end flux of 120 L/m2 h to CFS-MFIUF measured at dead-end flux of 20 L/m2 h for RO fouling rate prediction. Using this flux correction factor, the test duration of CFS-MFIUF can be shortened from 15 h to 2 h.  相似文献   

5.
Salt cleaning of organic-fouled reverse osmosis membranes   总被引:1,自引:0,他引:1  
Lee S  Elimelech M 《Water research》2007,41(5):1134-1142
Cleaning of organic-fouled reverse osmosis membranes with concentrated salt solutions has been investigated. Polysaccharides (alginate and pectin) and Suwannee River natural organic matter were used as model organic foulants. By systematically varying the chemical and physical factors affecting salt cleaning efficiency, we were able to elucidate the processes and mechanisms involved during salt cleaning. Chemical factors investigated included salt dose, salt type, and organic foulant composition, while physical factors included cleaning contact time, crossflow velocity, cleaning solution temperature, and permeation rate. Atomic force microscopy (AFM) was utilized to quantify the reduction in intermolecular foulant-foulant adhesion upon salt cleaning. Our results showed that salt cleaning was quite effective in cleaning reverse osmosis membranes fouled by gel-forming hydrophilic organic foulants, such as alginate and pectin. The proposed mechanism for salt cleaning involves structural changes of the cross-linked gel layer on the membrane surface upon exposure to the salt solution followed by an ion exchange reaction that induces the breakup of calcium-foulant bonds as well as calcium bridging (cross-linking) between foulant molecules. The results obtained from AFM force measurements as well as foulant release experiments confirmed that these chemical reactions were the major mechanisms of salt cleaning. Salt cleaning appears to be an effective cleaning method, and may prove useful for membrane-based advanced wastewater reclamation, where a large fraction of the organic foulants is hydrophilic.  相似文献   

6.
She Q  Jin X  Li Q  Tang CY 《Water research》2012,46(7):2478-2486
Osmotically driven membrane processes, such as forward osmosis (FO) and pressure retarded osmosis (PRO), are attracting increasing interest in research and applications in environment and energy related fields. In this study, we systematically investigated the alginate fouling on an osmotic membrane during FO operation using four types of draw solutions (NaCl, MgCl2, CaCl2 and Ca(NO3)2) to elucidate the relationships between reverse (from draw solution to feed solution) and forward (from feed solution to draw solution) solute diffusion, and membrane fouling. At the same water flux level (achieved by adjusting the draw solution concentration), the greatest reverse solute diffusion rate was observed for NaCl draw solution, followed by Ca(NO3)2 draw solution, and then CaCl2 draw solution and MgCl2 draw solution, the order of which was consistent with that of their solute permeability coefficients. Moreover, the reverse solute diffusion of draw solute (especially divalent cation) can change the feed solution chemistry and thus enhance membrane fouling by alginate, the extent of which is related to the rate of the reverse draw solute diffusion and its ability to interact with the foulant. The extent of fouling for the four types of draw solution followed an order of Ca(NO3)2 > CaCl2 >> MgCl2 > NaCl. On the other hand, the rate of forward diffusion of feed solute (e.g., Na+) was in turn promoted under severe membrane fouling in active layer facing draw solution orientation, which may be attributed to the fouling enhanced concentration polarization (pore clogging enhanced ICP and cake enhanced concentration polarization). The enhanced concentration polarization can lead to additional water flux reduction and is an important mechanism governing the water flux behavior during FO membrane fouling. Findings have significant implications for the draw solution selection and membrane fouling control in osmotically driven membrane processes.  相似文献   

7.
Alginate has been commonly used as a model foulant in studies of membrane organic fouling. As a complex polymer, alginate is composed of two different monomers, namely M ((1 → 4) linked β-D-mannopyranuronic acid) and G ((1 → 4) linked α-L-gulopyranuronic acid) which are randomly arranged into MG-, MM- and GG-blocks. So far, little information is available about fouling propensity of each block in microfiltration. In this study, microfiltration experiments were conducted respectively with MG-, MM- and GG-blocks separated from alginate under defined conditions. Results showed the severest fouling in the filtration of MG-block, and the least flux decline in the filtration of MM-block. The initial pore blocking was found to be responsible for the fouling observed in MG-block filtration, while the cake layer formed on membrane surface during the MM-block filtration could serve as a pre-filter that prevented membrane from further pore blocking. In order to look into fouling mechanisms, the effects of transparent exopolymeric particles (TEP) on membrane fouling were also studied. TEP were found to form through aggregation or cross-link of alginate blocks. As TEP were bigger than original alginate blocks, they could facilitate the formation of cake layer on membrane surface. It was observed that more TEP were produced from MM-blocks than from MG-blocks in solutions. This in turn explained why cake resistance was dominant in the filtration of MM-blocks as compared to MG-blocks. The analysis by the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory further revealed that MM-blocks had lowest cohesive interaction energy among all three alginate blocks, which favoured aggregation of MM-blocks, and ultimately leading to the formation of more TEP. This study provided insights into the roles of different alginate blocks in development of membrane fouling, and suggested that the membrane fouling would be related to molecular structure of alginate.  相似文献   

8.
Investigations on solar-driven membrane distillation (SDMD) were carried out for removal of arsenic from contaminated groundwater. Three different types of hydrophobic membranes made of polytetrafluoroethylene (PTFE) and polypropylene (PP) with surface area of 120 × 10−4 m2 were used as flat sheet in a direct contact membrane distillation (DCMD) set up in a cross flow module. Effects of initial arsenic concentration in the feed, feed velocity, feed temperature and distillate inlet temperature on arsenic removal efficiency and flux were studied where temperatures of feed and distillate were found to have significant effect on the flux. Almost 100% arsenic separation was achieved without wetting membrane pore even after 120 h of operation. The PTFE membrane with a flux of 49.80 kg/m2 h was found to the best one out of the tested membranes. The study shows that solar-driven DCMD can effectively separate arsenic from groundwater using a cross flow membrane module with PTFE hydrophobic membrane.  相似文献   

9.
The membrane fouling propensity of natural seawater during forward osmosis was studied. Seawater from the Red Sea was used as the feed in a forward osmosis process while a 2 M sodium chloride solution was used as the draw solution. The process was conducted in a semi-batch mode under two crossflow velocities, 16.7 cm/s and 4.2 cm/s. For the first time reported, silica scaling was found to be the dominant inorganic fouling (scaling) on the surface of membrane active layer during seawater forward osmosis. Polymerization of dissolved silica was the major mechanism for the formation of silica scaling. After ten batches of seawater forward osmosis, the membrane surface was covered by a fouling layer of assorted polymerized silica clusters and natural organic matter, especially biopolymers. Moreover, the absorbed biopolymers also provided bacterial attachment sites. The accumulated organic fouling could be partially removed by water flushing while the polymerized silica was difficult to remove. The rate of flux decline was about 53% with a crossflow velocity of 16.7 cm/s while reaching more than 70% with a crossflow velocity of 4.2 cm/s. Both concentration polarization and fouling played roles in the decrease of flux. The salt rejection was stable at about 98% during seawater forward osmosis. In addition, an almost complete rejection of natural organic matter was attained. The results from this study are valuable for the design and development of a successful protocol for a pretreatment process before seawater forward osmosis and a cleaning method for fouled membranes.  相似文献   

10.
Polyacrylonitrile/polyamide (PAN/PA) thin film composite nanofiltration membranes were manufactured by interfacial polymerization (IP) of trimesoylchloride reacting with piperazine, in the presence of triethylamine. The influence of IP reaction time up to 100 s on the membrane performance and structure was investigated considering flux, rejection, structural morphology and roughness of the membrane using permeation test, scanning electron microscopy, atomic force microscopy as well as fourier transform infrared spectroscopy. Structural evaluation of membranes revealed that the average PA surface pore size was reduced initially up to 60 s of reaction due to the crosslinking process and PA layer compaction increment, however, became larger at longer reaction times. The PA layer effective thickness grew up with IP time and became constant after 60 s. The best water flux and Na2SO4 salt rejection were obtained at 60 s of reaction, which were 100 m3/day and 87% at pressure of 13 barg. Variation trends of permeation and morphological results showed accordance that confirmed their accuracy. Comparison of the Na+ rejection value with the rejection of commercialized NF membrane of Dow Company (NF90–400/34i) showed acceptable result for membrane performance.  相似文献   

11.
Kang IJ  Yoon SH  Lee CH 《Water research》2002,36(7):1803-1813
Comparison of filtration characteristics of organic and inorganic membranes was made in terms of physicochemical properties of the membrane materials, cake layer formation, backflushing and backfeeding effects in a membrane-coupled anaerobic bioreactor. For the inorganic membrane, struvite (MgNH4PO4 x 6H2O) was found to have accumulated inside the membrane pore and plays a key role in flux decline. For the organic, however, a thick cake layer composed of biomass and struvite formed on the membrane surface, thus causing a major hydraulic resistance. In order to mitigate flux decline for both membranes, backflushing and backfeeding modes were examined. With acidic (pH 2.0) backflushing, the flux was approximately doubled for the organic membrane. However, unexpectedly a negative effect was observed for the inorganic membrane. An alkaline backflushing instead of acidic backflushing gave rise to a flux improvement by a factor of two without any negative effect, even for the inorganic membrane. The backfeeding mode gave rise to a much higher flux compared with the normal mode in both types of membrane, although the flux returned to the same level as that with the normal mode after 6 days for the inorganic membrane. The differences between the two types of membranes were explained by membrane morphology, a ligand exchange reaction as well as a surface charge effect.  相似文献   

12.
Assessing PAC contribution to the NOM fouling control in PAC/UF systems   总被引:3,自引:0,他引:3  
This paper investigates the powdered activated carbon (PAC) contribution to the fouling control by natural organic matter (NOM) in PAC/UF hybrid process, as well as the foulant behaviour of the PAC itself. Solutions of NOM surrogates (humic acids, AHA, and tannic acid, TA) and AOM/EOM (algogenic organic matter/extracellular organic matter) fractions from a Microcystis aeruginosa culture were permeated through an ultrafiltration (UF) hollow-fibre cellulose acetate membrane (100 kDa cut-off). The greatest impairment on flux and the poorest rejection were associated with polysaccharide-like EOM substances combined with mono and multivalent ions. PAC, either in the absence or in the presence of NOM, did not affect the permeate flux nor the reversible membrane fouling, regardless of the NOM characteristics (hydrophobicity and protein content) and water inorganics. However, PAC controlled the irreversible membrane fouling, minimising the chemical cleaning frequency. Furthermore, PAC enhanced AHA and TA rejections and the overall removal of AOM, although it was apparently ineffective for the highly hydrophilic EOM compounds.  相似文献   

13.
This study demonstrates the removal efficiency and the permeate flux behavior during cross-flow nanofiltration (NF) of aqueous solutions of five pharmaceutically active compounds (PhACs). Cephalexin, tetracycline, acetaminophen, indomethacin and amoxicillin were used as models of PhACs, and alginate was selected as model of natural organic matter (NOM). Two commercial composite NF membranes (SR2 and SR3) with different characteristics were used. The highest rejection was observed for tetracycline, i.e., 75-95% for membrane SR 2 and 95-100% for membrane SR 3, while the rejection was least for acetaminophen (32-36% for SR2 and 52-59% for SR3). As the pH of acetaminophen solution was increased (from 6 to 9) the rejection would increase. Changes of ionic content (from 10 to 20 mM) lead to increase (from 89 to 93% for SR 3) or decrease (from 100 to 91% for SR2) of cephalexin rejection depending on the membrane used. The permeate flux would decrease with decreasing the pH solution and increasing ionic strength. The addition of alginate in the feed stream decreased the permeate flux, with lower reduction for SR3, and increased the PhAC rejection except for acetaminophen and amoxicillin. Both size and Donnan exclusions seemed to occur, and the effect of Donnan exclusion was more pronounced for the NF membrane having larger effective pore size (SR2).  相似文献   

14.
Yu HY  Tang ZQ  Huang L  Cheng G  Li W  Zhou J  Yan MG  Gu JS  Wei XW 《Water research》2008,42(16):4341-4347
To improve the antifouling characteristics of polypropylene hollow fiber macroporous membranes in a submerged membrane-bioreactor for wastewater treatment, the membranes were surface modified by H2O plasma treatment. Structural and morphological changes on the membrane surface were characterized by X-ray photoelectron spectroscopy (XPS) and field emission scanning electron microscopy (FE-SEM). The change of surface wettability was monitored by contact angle measurement. The static water contact angle of the modified membrane reduced obviously with the increase of plasma treatment time. The total surface free energy and its dispersive component decreased, while the polar component increased with the increase of treatment time. The relative pure water flux for the modified membranes increased gradually with the increase of plasma treatment time. The tensile strength and the tensile elongation at break for the membranes decreased after plasma treatment. After continuous operation in a submerged membrane-bioreactor for about 68 h, flux recovery after water and caustic cleaning, flux ratio after fouling were improved by 2.0, 3.6 and 22.0%, while reduction of flux was reduced by 1.1% for the 1 min H2O plasma treated membrane, compared to those of the unmodified membrane.  相似文献   

15.
Lee H  Amy G  Cho J  Yoon Y  Moon SH  Kim IS 《Water research》2001,35(14):3301-3308
One of the most common problems encountered in water treatment applications of membranes is fouling. Natural organic matter (NOM) represents a particularly problematic foulant. Membranes may be fouled by relatively hydrophilic and/or hydrophobic NOM components, depending on NOM characteristics, membrane properties, and operating conditions. To maximize flux recovery for an NOM-fouled ultrafiltration membrane (NTR 7410), chemical cleaning and hydraulic rinsing with a relatively high cross-flow velocity were investigated as cleaning strategies. The modification of the membrane surface with either an anionic or a cationic surfactant was also evaluated to minimize membrane fouling and to enhance NOM rejection. Foulants from a hydrophobic NOM source (Orange County ground water (OC-GW)) were cleaned more effectively in terms of permeate flux by acid and caustic cleanings than foulants from a relatively hydrophilic NOM source (Horsetooth surface water (HT-SW)). An anionic surfactant (sodium dodecyl sulfate (SDS)) was not effective as a cleaning agent for foulants from either hydrophobic or hydrophilic NOM sources. High ionic strength cleaning with 0.1 M NaCl was comparatively effective in providing flux recovery for NOM-fouled membranes compared to other chemical cleaning agents. Increased cross-flow velocity and longer cleaning time influenced the efficiency of caustic cleaning, but not high ionic strength cleaning. The membrane was successfully modified only with the cationic surfactant; however, enhanced NOM rejection was accompanied by a significant flux reduction.  相似文献   

16.
Jinling Wu  Haitao Li 《Water research》2010,44(6):1853-279
The membrane bioreactor (MBR) features many advantages, such as its excellent effluent quality and compactness. Moreover, the MBR is well known for its disinfectant capacity. This paper investigates virus removal performance for municipal wastewater using a submerged MBR and the operational conditions affecting the virus removal using indigenous somatic coliphages (SC) as an indicator for viruses. The results revealed that the municipal wastewater acquired by the Qinghe Municipal Wastewater Treatment Plant, Beijing, contained an SC concentration of (2.81 ± 1.51) × 104 PFU ml−1, which varies seasonally due to spontaneous decay. In the MBR system, the biomass process dominates SC removal. Membrane rejection is an essential supplement of biomass process for SC removal. In this paper, the relative contributions of biomass process and membrane rejection during the start-up and steady operational periods are discussed in detail. The major factors affecting SC removal are biodegradation, membrane pore size, and gel layer formation on the membrane. During long-term experiments, it was demonstrated that high inoculated sludge concentration, long hydraulic retention time, moderate fouling layer, and non-frequent chemical cleaning are favorable for high SC removal in MBR systems.  相似文献   

17.
The critical flux and chemical cleaning-in-place (CIP) in a long-term operation of a pilot-scale submerged membrane bioreactor for municipal wastewater treatment were investigated. Steady filtration under high flux (30 L/(m2 h)) was successfully achieved due to effective membrane fouling control by sub-critical flux operation and chemical CIP with sodium hypochlorite (NaClO) in both trans-membrane pressure (TMP) controlling mode (cleaning with high concentration NaClO of 2000-3000 mg/L in terms of effective chorine was performed when TMP rose to 15 kPa) and time controlling mode (cleanings were performed weekly and monthly respectively with low concentration NaClO (500-1000 mg/L) and high concentration NaClO (3000 mg/L)). Microscopic analysis on membrane fibers before and after high concentration NaClO was also conducted. Images of scanning electron microscopy (SEM) and atomic force microscopy (AFM) showed that NaClO CIP could effectively remove gel layer, the dominant fouling under sub-critical flux operation. Porosity measurements indicated that NaClO CIP could partially remove pore blockage fouling. The analyses from fourier transform infrared spectrometry (FTIR) with attenuated total reflectance accessory (ATR) and energy dispersive spectrometer (EDS) demonstrated that protein-like macromolecular organics and inorganics were the important components of the fouling layer. The analysis of effluent quality before and after NaClO CIP showed no obvious effect on effluent quality.  相似文献   

18.
Transition in fouling mechanism in microfiltration of a surface water   总被引:1,自引:0,他引:1  
Yamamura H  Chae S  Kimura K  Watanabe Y 《Water research》2007,41(17):3812-3822
The main disadvantage of membrane filtration is membrane fouling, which remains as the major obstacle for more efficient use of this technology. Information about the constituents that cause fouling is indispensable for more efficient operation. We examined the changes in both foulant characteristics and membrane morphology by performing the pilot-scale filtration test using one microfiltration membrane. During the operation, we cut the membrane fibers three times, and the components that caused irreversible fouling were extracted by acid or alkaline solution. We found that the characteristic of inorganic matter extracted by acid solution completely differed depending on the filtration period. A large amount of iron was extracted in the second chemical cleaning, while manganese was the dominant component of the extracted inorganic matter in the third chemical cleaning. The analysis of Fourier transform infrared (FTIR) and cross polarization magic angle spinning carbon-13 (CPMAS (13)C) nuclear magnetic resonance (NMR) demonstrated that the contribution of humic substances and carbohydrate in the organic foulant had increased as fouling developed. The changes in the major foulant have no relation with the fluctuation in feed water. The analysis of membrane morphology illustrated that the cake layer started to build up after the blockage of membrane pores. Based on the above results, we hypothesized the following fouling mechanism: the pores were covered or narrowed with relatively large particles such as iron, carbohydrate or protein; small particles such as manganese or humic substances blocked the narrowed pores; and finally an irreversible cake layer started to build up on the membrane surface.  相似文献   

19.
Worldwide, fens and peat lakes that used to be peat-forming systems have become a significant source of C, N and P due to increased peat decomposition. To test the hypothesis that net nutrient mineralization rates may be uncoupled from decomposition rates, we investigated decomposition and net mineralization rates of nutrients in relation to sediment and pore water characteristics. We incubated 28 non-calcareous peat sediments and floating fen soils under aerobic and anaerobic conditions. We also tried to find a simple indicator to estimate the potential nutrient mobilization rates from peat sediments to the water layer by studying their relation with sediment and pore water characteristics in 44 Dutch non-calcareous peat lakes and ditches.Decomposition rates were primarily determined by the organic matter content, and were higher under aerobic conditions. However, highly decomposed peat sediments with low C:P and C:N ratios still showed high net nutrient mineralization rates. At Fe:PO4 ratios below 1 mol mol−1, PO4 mobilization from the sediment to the water layer was considerable and linearly related to the pore water PO4 concentration. At higher ratios, there was a strong linear correlation between the Fe:PO4 ratio and PO4 mobilization. Hence, measuring Fe and PO4 in anaerobic sediment pore water provides a powerful tool for a quick assessment of internal PO4 fluxes. Mobilization of mineral N was largely determined by diffusion. Total sediment Fe:S ratios gave an important indication of the amount of Fe that is available to immobilize PO4. Pore water Fe concentrations decreased at ratios <1 mol mol−1, whereas pore water PO4 concentrations and PO4 mobilization to the water layer increased.As PO4 mobilization rates from the sediment to the water layer contribute to almost half of the total P load in Dutch peat lakes and fens, it is of pivotal importance to examine the magnitude of internal fluxes. Dredging of the nutrient-rich upper sediment layer will only be a useful restoration measure if both the influx of P-rich water and its internal mobilization from the newly exposed, potentially more reactive peat layer are sufficiently low.  相似文献   

20.
A novel membrane bioreactor system that uses an intermittent electric field was successfully developed to suppress membrane fouling, caused mainly by activated sludge. We found that the surface of the activated sludge is negatively charged, and propose the utilization of an electric repulsive force to move the sludge away from the membrane by applying an electric field only when the permeate flux has drastically declined because of membrane fouling. The experimental results showed that a field of 6 V cm−1, switched on and off every 90 s, significantly improved the removal of the activated sludge from the membrane and accordingly improved the average permeate flux.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号