首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bai  Zhong-Zhi 《Numerical Algorithms》1997,15(3-4):347-372
The finite difference or the finite element discretizations of many differential or integral equations often result in a class of systems of weakly nonlinear equations. In this paper, by reasonably applying both the multisplitting and the two-stage iteration techniques, and in accordance with the special properties of this system of weakly nonlinear equations, we first propose a general multisplitting two-stage iteration method through the two-stage multiple splittings of the system matrix. Then, by applying the accelerated overrelaxation (AOR) technique of the linear iterative methods, we present a multisplitting two-stage AOR method, which particularly uses the AOR-like iteration as inner iteration and is substantially a relaxed variant of the afore-presented method. These two methods have a forceful parallel computing function and are much more suitable to the high-speed multiprocessor systems. For these two classes of methods, we establish their local convergence theories, and precisely estimate their asymptotic convergence factors under some suitable assumptions when the involved nonlinear mapping is only directionally differentiable. When the system matrix is either an H-matrix or a monotone matrix, and the nonlinear mapping is a P-bounded mapping, we thoroughly set up the global convergence theories of these new methods. Moreover, under the assumptions that the system matrix is monotone and the nonlinear mapping is isotone, we discuss the monotone convergence properties of the new multisplitting two-stage iteration methods, and investigate the influence of the multiple splittings as well as the relaxation parameters upon the convergence behaviours of these methods. Numerical computations show that our new methods are feasible and efficient for parallel solving of the system of weakly nonlinear equations. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

2.
ONMONOTONECONVERGENCEOFNONLINEARMULTISPLITTINGRELAXATIONMETHODS¥WANGDEREN;BAIZHONGZHI(DepazatmentofMathematics,ShsllghaiUnive...  相似文献   

3.
We study the numerical behaviours of the relaxed asynchronous multisplitting methods for the linear complementarity problems by solving some typical problems from practical applications on a real multiprocessor system. Numerical results show that the parallel multisplitting relaxation methods always perform much better than the corresponding sequential alternatives, and that the asynchronous multisplitting relaxation methods often outperform their corresponding synchronous counterparts. Moreover, the two-sweep relaxed multisplitting methods have better convergence properties than their corresponding one-sweep relaxed ones in the sense that they have larger convergence domains and faster convergence speeds. Hence, the asynchronous multisplitting unsymmetric relaxation iterations should be the methods of choice for solving the large sparse linear complementarity problems in the parallel computing environments.  相似文献   

4.
For the large sparse systems of weakly nonlinear equations arising in the discretizations of many classical differential and integral equations, this paper presents a class of asynchronous parallel multisplitting two-stage iteration methods for getting their solutions by the high-speed multiprocessor systems. Under suitable assumptions, we study the global convergence properties of these asynchronous multisplitting two-stage iteration methods. Moreover, for this class of new methods, we establish their local convergence theories, and precisely estimate their asymptotic convergence factors under some reasonable assumptions when the involved nonlinear mapping is only assumed to be directionally differentiable. Numerical computations show that our new methods are feasible and efficient for parallely solving the system of weakly nonlinear equations.  相似文献   

5.
PARALLELNONLINEARMULTISPLITTINGRELAXATIONMETHODSWANGDERENANDBAIZHONGZHI(DepartmentofMathematics,ShanghaiUniversityofSciencean...  相似文献   

6.
1.IntroductionMultisplittingmethodsforgettingthesolutionoflargesparsesystemoflinearequationsAx=b,A=(and)6L(Rn)nonsingular,x=(x.),b=(b.)eR"(1.1)areefficientparalleliterativemethodswhicharebasedonseveralsplittingsofthecoefficientmatrixAEL(R").Following[11th…  相似文献   

7.
In this article, we introduce two new asynchronous multisplitting methods for solving the system of weakly nonlinear equations Ax = G(x) in which A is an n × n real matrix and G(x) = (g 1(x), g 2(x), . . . , g n (x)) T is a P-bounded mapping. First, by generalized accelerated overrelaxation (GAOR) technique, we introduce the asynchronous parallel multisplitting GAOR method (including the synchronous parallel multisplitting AOR method as a special case) for solving the system of weakly nonlinear equations. Second, asynchronous parallel multisplitting method based on symmetric successive overrelaxation (SSOR) multisplitting is introduced, which is called asynchronous parallel multisplitting SSOR method. Then under suitable conditions, we establish the convergence of the two introduced methods. The given results contain synchronous multisplitting iterations as a special case.  相似文献   

8.
For the block system of weakly nonlinear equations Ax=G(x), where is a large sparse block matrix and is a block nonlinear mapping having certain smoothness properties, we present a class of asynchronous parallel multisplitting block two-stage iteration methods in this paper. These methods are actually the block variants and generalizations of the asynchronous multisplitting two-stage iteration methods studied by Bai and Huang (Journal of Computational and Applied Mathematics 93(1) (1998) 13–33), and they can achieve high parallel efficiency of the multiprocessor system, especially, when there is load imbalance. Under quite general conditions that is a block H-matrix of different types and is a block P-bounded mapping, we establish convergence theories of these asynchronous multisplitting block two-stage iteration methods. Numerical computations show that these new methods are very efficient for solving the block system of weakly nonlinear equations in the asynchronous parallel computing environment.  相似文献   

9.
In order to solve large sparse linear complementarity problems on parallel multiprocessor systems, we construct modulus-based synchronous two-stage multisplitting iteration methods based on two-stage multisplittings of the system matrices. These iteration methods include the multisplitting relaxation methods such as Jacobi, Gauss–Seidel, SOR and AOR of the modulus type as special cases. We establish the convergence theory of these modulus-based synchronous two-stage multisplitting iteration methods and their relaxed variants when the system matrix is an H ?+?-matrix. Numerical results show that in terms of computing time the modulus-based synchronous two-stage multisplitting relaxation methods are more efficient than the modulus-based synchronous multisplitting relaxation methods in actual implementations.  相似文献   

10.
In this paper,a class of generalized parallel matrix multisplitting relaxation methods for solving linear complementarity problems on the high-speed multiprocessor systems is set up. This class of methods not only includes all the existing relaxation methods for the linear complementarity problems ,but also yields a lot of novel ones in the sense of multisplittlng. We establish the convergence theories of this class of generalized parallel multisplitting relaxation methods under the condition that the system matrix is an H-metrix with positive diagonal elements.  相似文献   

11.
本文提出了求解大型非线性代数方程组Aф(x)+Bψ(x)=b的并行多分裂AOR(Accelerated Overrela Xation)算法。在一定的条件下,证明了非线性代数方程组解的存在唯一性,并建立了新算法的全局收敛性理论。  相似文献   

12.
The matrix multisplitting iteration method is an effective tool for solving large sparse linear complementarity problems. However, at each iteration step we have to solve a sequence of linear complementarity sub-problems exactly. In this paper, we present a two-stage multisplitting iteration method, in which the modulus-based matrix splitting iteration and its relaxed variants are employed as inner iterations to solve the linear complementarity sub-problems approximately. The convergence theorems of these two-stage multisplitting iteration methods are established. Numerical experiments show that the two-stage multisplitting relaxation methods are superior to the matrix multisplitting iteration methods in computing time, and can achieve a satisfactory parallel efficiency.  相似文献   

13.
In the sense of the nonlinear multisplitting and based on the principle of sufficiently using the delayed information, we propose models of asynchronous parallel accelerated overrelaxation iteration methods for solving large scale system of nonlinear equations. Under proper conditions, we set up the local convergence theories of these new method models.  相似文献   

14.
1. IntroductionConsider the large sparse Linear Complementarity Problem (LCP):where .1I = (mkj) 6 L(R") is a gitren real matrix and q = (qk) E R" a given real vector. Thisproblem arises in many areas of scientific computing. FOr example, it arises from problemsin (linear and) contrex quadratic programming, the prob1em of finding a Nash equilibriumpoint of a bimatrix game (e.g., Cottle and Dantzig[5] and Lemke[13]), a11d also a number of freeboundary problems of fluid mechanics (e.g., Cr…  相似文献   

15.
In this paper, we propose the parallel multisplitting TOR method, for solving a large nonsingular systems of linear equations Ax = b. These new methods are a generalization and an improvement of the relaxed parallel multisplitting method (Formmer and Mager, 1989) and parallel multisplitting AOR Algorithm (Wang Deren, 1991). The convergence theorem of this new algorithm is established under the condition that the coefficient matrix A of linear systems is an H-matrix. Some results also yield new convergence theorem for TOR method.  相似文献   

16.
We consider several synchronous and asynchronous multisplitting iteration schemes for solving aclass of nonlinear complementarity problems with the system matrix being an H-matrix.We establish theconvergence theorems for the schemes.The numerical experiments show that the schemes are efficient forsolving the class of nonlinear complementarity problems.  相似文献   

17.
Asynchronous parallel multisplitting relaxation methods for solving large sparse linear complementarity problems are presented, and their convergence is proved when the system matrices are H-matrices having positive diagonal elements. Moreover, block and multi-parameter variants of the new methods, together with their convergence properties,are investigated in detail. Numerical results show that these new methods can achieve high parallel efficiency for solving the large sparse linear complementarity problems on multiprocessor systems.  相似文献   

18.
A class of parallel multisplitting chaotic relaxation methods is established for the large sparse linear complementarity problems, and the global and monotone convergence is proved for the H-matrix and the L-matrix classes, respectively. Moreover, comparison theorem is given, which describes the influences of the parameters and the multiple splittings upon the monotone convergence rates of the new methods.  相似文献   

19.
Parallel nonlinear multisplitting methods   总被引:1,自引:0,他引:1  
Summary Linear multisplitting methods are known as parallel iterative methods for solving a linear systemAx=b. We extend the idea of multisplittings to the problem of solving a nonlinear system of equationsF(x)=0. Our nonlinear multisplittings are based on several nonlinear splittings of the functionF. In a parallel computing environment, each processor would have to calculate the exact solution of an individual nonlinear system belonging to his nonlinear multisplitting and these solutions are combined to yield the next iterate. Although the individual systems are usually much less involved than the original system, the exact solutions will in general not be available. Therefore, we consider important variants where the exact solutions of the individual systems are approximated by some standard method such as Newton's method. Several methods proposed in literature may be regarded as special nonlinear multisplitting methods. As an application of our systematic approach we present a local convergence analysis of the nonlinear multisplitting methods and their variants. One result is that the local convergence of these methods is determined by an induced linear multisplitting of the Jacobian ofF.Dedicated to the memory of Peter Henrici  相似文献   

20.
1. IntroductionWe consider the linear complementarity problem LCP(M,q): Find a z E m such thatwhere M = (mij) E boxs and q ~ (qi) 6 m are given real matriX and vector, respectively.This problem axises in various scientific computing areas such as the Nash equilibritun poillt ofa bimatrir game (e.g., Cottle and Dantzig[4] and Lelnke[12j) and the free boundary problems offluid mechedcs (e.g., Cryer[8]). There have been a lot of researches on the approximate solutionof the linear complemeat…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号