首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We present an overview of a long-term research programme that is aimed at revealing the relations between individual feeding, growth, reproduction and mortality in Daphnia pulex and the state and dynamics of the population. We analyse a physiologically structured population model, in which individual performance is described using an energy budget model that incorporates a food dependence. The model predictions are shown to be at odds with experimental observations on populations of Daphnia. We argue that these discrepancies are primarily due to insufficient knowledge about the precise size-scaling of the food ingestion rate, which plays a central role in the competitive interaction among individuals. To a lesser extent, the discrepancies arise because details about the energy budget of individual Daphnia are not sufficiently known for the food conditions prevailing in population experiments.  相似文献   

2.
3.
4.
Quantitative genetic approaches have been developed that allow researchers to determine which of two mechanisms, mutation accumulation (MA) or antagonistic pleiotropy (AP), best explain observed variation in patterns of senescence using classical quantitative genetic techniques. These include the creation of mutation accumulation lines, artificial selection experiments and the partitioning of genetic variances across age classes. This last strategy has received the lion''s share of empirical attention. Models predict that inbreeding depression (ID), dominance variance and the variance among inbred line means will all increase with age under MA but not under those forms of AP that generate marginal overdominance. Here, we show that these measures are not, in fact, diagnostic of MA versus AP. In particular, the assumptions about the value of genetic parameters in existing AP models may be rather narrow, and often violated in reality. We argue that whenever ageing-related AP loci contribute to segregating genetic variation, polymorphism at these loci will be enhanced by genetic effects that will also cause ID and dominance variance to increase with age, effects also expected under the MA model of senescence. We suggest that the tests that seek to identify the relative contributions of AP and MA to the evolution of ageing by partitioning genetic variance components are likely to be too conservative to be of general value.  相似文献   

5.
Barbara C. Boyer 《Hydrobiologia》1995,305(1-3):217-222
In spiralian embryos determination of the axes of bilateral symmetry is associated with D quadrant specification. This can occur late through equal cleavage and cell interactions (conditional specification) or by the four-cell stage through unequal cleavage and cytoplasmic localization (autonomous specification). Freeman & Lundelius (1992) suggest that in spiralian coelomates the former method is ancestral and the latter derived, with evolutionary pressure to shorten metamorphosis resulting in early D quadrant determination through unequal cleavage and appearance of adult features in the larvae. Because of the key phylogenetic position of the turbellarian platyhelminthes, understanding the method of axis specification in this group is important in evaluating the hypothesis. Polyclad development, with equal quartet spiral cleavage, is believed to represent the most primitive condition among living turbellarians and has been examined experimentally in Hoploplana inquilina. Blastomere deletions at the two and four-cell stage produce larvae that are abnormal in morphology and symmetry, indicating that early development is not regulative, and also establish that the embryo does not have an invariant cell lineage. Deletions of micromeres and macromeres at the eight-cell stage indicate that cell interactions are involved in dorso-ventral axis determination, with cross-furrow macromeres playing a more significant role than non-cross-furrow cells. The results support the idea that conditional specification is the primitive developmental mode that characterized the common ancestor of the turbellarians and spiralian coelomates. Evolutionary trends in development in polyclads and other turbellarian orders are discussed.  相似文献   

6.
A recent debate has touched upon the question of whether diseases can be understood as dysfunctional mechanisms or whether there are "pathological" mechanisms that deserve to be investigated and explained independently (Nervi 2010; Moghaddam-Taaheri 2011). Here I suggest that both views tell us something important about disease but that in many instances only a systemic view can shed light on the relationship between physiology and pathology. I provide examples from the literature in systems biology in support of my position. As a result of my analysis, I conclude that a perspective narrowly focusing on mechanisms is insufficient if the goal is to get a comprehensive picture of disease.  相似文献   

7.
  1. Most mammals have whiskers; however, nearly everything we know about whiskers derives from just a handful of species, including laboratory rats Rattus norvegicus and mice Mus musculus, as well as some species of pinniped and marsupial.
  2. We explore the extent to which the knowledge of the whisker system from a handful of species applies to mammals generally. This will help us understand whisker evolution and function, in order to gain more insights into mammalian behaviour and ecology.
  3. This review is structured around Tinbergen’s four questions, since this method is an established, comprehensive, and logical approach to studying behaviour. We ask: how do whiskers work, develop, and evolve? And what are they for?
  4. While whiskers are all slender, curved, tapered, keratinised hairs that transmit vibrotactile information, we show that there are marked differences between species with respect to whisker arrangement, numbers, length, musculature, development, and growth cycles.
  5. The conservation of form and a common muscle architecture in mammals suggests that early mammals had whiskers. Whiskers may have been functional even in therapsids.
  6. However, certain extant mammalian species are equipped with especially long and sensitive whiskers, in particular nocturnal, arboreal species, and aquatic species, which live in complex environments and hunt moving prey.
  7. Knowledge of whiskers and whisker use can guide us in developing conservation protocols and designing enriched enclosures for captive mammals.
  8. We suggest that further comparative studies, embracing a wider variety of mammalian species, are required before one can make large-scale predictions relating to evolution and function of whiskers. More research is needed to develop robust techniques to enhance the welfare and conservation of mammals.
  相似文献   

8.
9.
10.
What primary microcephaly can tell us about brain growth   总被引:4,自引:0,他引:4  
Autosomal recessive primary microcephaly (MCPH) is a neuro-developmental disorder that causes a great reduction in brain growth in utero. MCPH is hypothesized to be a primary disorder of neurogenic mitosis, leading to reduced neuron number. Hence, MCPH proteins are likely to be important components of cellular pathways regulating human brain size. At least six genes can cause this disorder and four of these have recently been identified: autosomal recessive primary microcephaly 1 (MCPH1), abnormal spindle-like, microcephaly associated (ASPM), cyclin-dependent kinase 5 regulatory subunit-associated protein 2 (CDK5RAP2) and centromere protein J (CENPJ). Whereas aberration of ASPM is the most common cause of MCPH, MCPH1 patients can be more readily diagnosed by the finding of increased numbers of "prophase-like cells" on routine cytogenetic investigation. Three MCPH proteins are centrosomal components but have apparently diverse roles that affect mitosis. There is accumulating evidence that evolutionary changes to the MCPH genes have contributed to the large brain size seen in primates, particularly humans. The aim of this article is to review what has been learnt about the rare condition primary microcephaly and the information this provides about normal brain growth.  相似文献   

11.
What can two-dimensional NMR tell us about proteins?   总被引:1,自引:0,他引:1  
As a result of spectacular advances in recent years, nuclear magnetic resonance (NMR) is now firmly established as an essential tool in protein research, providing both a unique method for three-dimensional structure determination and powerful new approaches for studies of protein dynamics and folding.  相似文献   

12.
13.
The recently published model of the structure of bacteriorhodopsin (bR), developed by fitting the peptide chain to a high-resolution, three-dimensional density map, rules out the existence of transmembrane beta-sheet and provides an accurate estimate of the helix content. The precise geometry of the dihedral angles in the helical regions of the polypeptide cannot yet be specified from the diffraction data, however. Published data on the circular dichroism (CD) spectrum between 190 and 240 nm, and the infrared (IR) spectrum in the amide I band suggest that the helical conformation in bR may be, for the most part, a rather unusual one. The precise structural model, which specifies the number of residues in transmembrane helices, can now be used as an additional constraint in seeking models of the helical conformation that are in quantitative agreement with the CD and IR spectroscopic data. Further spectroscopic measurements can also be used to determine whether there are changes in the unusual dihedral-angle conformation within the helices during the photocycle.  相似文献   

14.
15.
16.
Questions: 1. Do the species composition, richness and diversity of sapling communities vary significantly in differently sized patches? 2. Do forest patches of different sizes differ in woody plant colonization patterns? Location: São Francisco de Paula, Rio Grande do Sul, Brazil, 29°28'S,50°13'W. Methods: Three woody vegetation types, differing in structural development (patch size) and recovering for 10 years from cattle and burning disturbances, were sampled on grassland. We analysed the composition and complexity of the woody sapling communities, through relative abundance, richness and diversity patterns. We also evaluated recruitment status (residents vs. colonizers) of species in communities occurring in different forest patch size classes. Results : 1. There is a compositional gradient in sapling communities strongly associated with forest patch area. 2. Richness and diversity are positively correlated to patch area, but only in poorly structured patches; large patches present richness and diversity values similar to small patches. 3. Resident to colonizer abundance ratio increases from nurse plants to large patches. The species number proportion between residents and colonizers is similar in small and large patches and did not differ between these patch types. 4. Large patches presented a high number of exclusive species, while nurse plants and small patches did not. Conclusions: Woody plant communities in Araucaria forest patches are associated with patch structure development. Richness and diversity patterns are linked to patch colonization patterns. Generalist species colonize the understorey of nurse plants and small patches; resident species cannot recruit many new individuals. In large patches, sapling recruitment by resident adults precludes the immigration of new species into the patches, limiting richness and diversity.  相似文献   

17.
18.
Research on mirror self-recognition where animals are observed for mirror-guided self-directed behaviour has predominated the empirical approach to self-awareness in nonhuman primates. The ability to direct behaviour to previously unseen parts of the body such as the inside of the mouth, or grooming the eye by aid of mirrors has been interpreted as recognition of self and evidence of a self-concept. Three decades of research has revealed that contrary to monkeys, most great apes (humans, common chimpanzees, pygmy chimpanzees and orangutans but not the gorilla) have convincingly displayed the capacity to recognize self by mirrors. The putative discontinuity in phylogeny of the ability suggests the existence of a so-called cognitive gap between great apes and the rest of the animal kingdom. However, methodological and theoretical inconsistencies regarding the empirical approach prevail. For instance, the observation of self-directed behaviour might not be as straightforward as it seems. In addition, the interpretation of mirror self-recognition as an index of self-awareness is challenged by alternative explanations, raising doubt about some assumptions behind mirror self-recognition. To evaluate the significance of the test in discussions of the concept of self this paper presents and analyses some major arguments raised on the mirror task.  相似文献   

19.
20.
A growing body of evidence shows that mitochondria are heterogeneous in terms of structure and function. Increased heterogeneity has been demonstrated in a number of disease models including ischemia-reperfusion and nutrient-induced beta cell dysfunction and diabetes. Subcellular location and proximity to other organelles, as well as uneven distribution of respiratory components have been considered as the main contributors to the basal level of heterogeneity. Recent studies point to mitochondrial dynamics and autophagy as major regulators of mitochondrial heterogeneity. While mitochondrial fusion mixes the content of the mitochondrial network, fission dissects the mitochondrial network and generates depolarized segments. These depolarized mitochondria are segregated from the networking population, forming a pre-autophagic pool contributing to heterogeneity. The capacity of a network to yield a depolarized daughter mitochondrion by a fission event is fundamental to the generation of heterogeneity. Several studies and data presented here provide a potential explanation, suggesting that protein and membranous structures are unevenly distributed within the individual mitochondrion and that inner membrane components do not mix during a fusion event to the same extent as the matrix components do. In conclusion, mitochondrial subcellular heterogeneity is a reflection of the mitochondrial lifecycle that involves frequent fusion events in which components may be unevenly mixed and followed by fission events generating disparate daughter mitochondria, some of which may fuse again, others will remain solitary and join a pre-autophagic pool.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号