首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The system of approximate nonlinear equations describing liquid oscillations in axisymmetric vessels is constructed. The equations are obtained for the case in which two coordinates belonging to the family of generalized coordinates characterizing the liquid motion are not small. This family is selected so that from the resulting nonlinear equations we can obtain as a particular case the nonlinear equations of [1–3], which are valid for the class of cylindrical vessels, and the requirements are satisfied that the resulting nonlinear equations correspond to the widely adopted linearized equations of liquid oscillations [4–6], Nonlinear equations are obtained which describe liquid oscillations in arbitrary vessels of rotation with radial baffles.  相似文献   

2.
We study oscillatory properties of solutions of nonlinear impulsive hyperbolic differential equations and find new necessary and sufficient conditions for the existence of oscillations.__________Published in Neliniini Kolyvannya, Vol. 7, No. 4, pp. 439–445, October–December, 2004.  相似文献   

3.
The theory of microdamage for materials with a transversely isotropic matrix and unidirectional ellipsoid-like fibers is set forth. Microdamage is modeled by empty pores. The failure criterion for a microvolume is assumed to have the Huber–Mises form where the ultimate strength is a random function of coordinates with a power or Weibull distribution. The stress–strain state and effective properties of the material are determined from the theory of elasticity for materials with a transversely isotropic matrix and unidirectional fibers. The deformation and microdamage equations are closed by the porosity-balance equations. The nonlinear dependences of the coupled processes of deformation and microdamage on macrodeformations are constructed. The effect of physical and geometrical parameters on the processes is studied  相似文献   

4.
The propagation of nonstationary weak shock waves in a chemically active medium is essentially dispersive and dissipative. The equations for short-wavelength waves for such media were obtained and investigated in [1–4]. It is of interest to study quasimonochromatic waves with slowly varying amplitude and phase. A general method for obtaining the equations for modulated oscillations in nonlinear dispersive media without dissipation was proposed in [5–8]. In the present paper, for a dispersive, weakly nonlinear and weakly dissipative medium we derive in the three-dimensional formulation equations for waves of short wavelength and a Schrödinger equation, which describes slow modulations of the amplitude and phase of an arbitrary wave. The coefficients of the equations are particularized for the considered gas-liquid mixture. Solutions are obtained for narrow beams in a given defocusing medium as well as linear and nonlinear solutions in the neighborhood of a diffraction beam. A solution near a caustic for quasimonochromatic waves was found in [9].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 133–143, January–February, 1980.  相似文献   

5.
A method for constructing nonlinear equations of elastic deformation of plates with boundary conditions for stresses and displacements at the face surfaces in an arbitrary coordinate system is proposed. The initial three–dimensional problem of the nonlinear theory of elasticity is reduced to a one–parameter sequence of two–dimensional problems by approximating the unknown functions by truncated series in Legendre polynomials. The same unknowns are approximated by different truncated series. In each approximation, a linearized system of equations whose differential order does not depend on the boundary conditions at the face surfaces which can be formulated in terms of stresses or displacements is obtained.  相似文献   

6.
The theory of microdamageability of laminated materials is stated with account taken of the thermal effect. Microdamages in the components are simulated by pores empty or filled with particles of damaged material that resist compression. The fracture criterion is assumed to have the Nadai–Schleicher form, which takes into account the difference between the tensile and compressive ultimate loads, with the ultimate strength being a random function of coordinates with a power or Weibull distribution. The stress–strain state and the effective properties of the material are determined from the thermoelastic equations for laminated materials with porous components. The deformation and microdamage equations are closed by the equations of porosity balance corrected for the thermal effect. For various types of loading, nonlinear relations are derived for the coupled processes of deformation of a two-component laminated material and microdamage due to the thermal macrostrain of a component. The effect of physical and geometrical parameters on these processes is studied.  相似文献   

7.
The structural theory of short-term damage is generalized to the case where the undamaged components of a granular composite deform nonlinearly. The basis for this generalization is the stochastic elasticity equations for a granular composite with porous components whose skeletons deform nonlinearly. Microvolumes of the composite components meet the Huber–Mises failure criterion. Damaged microvolume balance equations are derived for the physically nonlinear materials of the components. Together with the equations relating macrostresses and macrostrains of a granular composite with porous nonlinear components, they constitute a closed-form system. The system describes the coupled processes of physically nonlinear deformation and microdamage. Algorithms for calculating the microdamage–macrostrain relationship and plotting deformation diagrams are proposed. Uniaxial tension curves are plotted for the case where microdamages occur in the linearly hardened matrix and do not in the inclusions, which are linearly elastic  相似文献   

8.
The structural theory of short-term damageability is generalized to the case of physically nonlinear deformation of an undamaged material. The stochastic elasticity equations for a porous medium whose skeleton deforms nonlinearly are used. The failure criterion for a microvolume of the material is assumed to be in the Huber–Mises form. The microdamage balance equation for a physically nonlinear material is derived. This equation and the macrostress–macrostrain relation for a porous physically nonlinear material constitute a closed-form system describing the coupled processes of physically nonlinear deformation and microdamage. An algorithm is constructed for computing microdamage–macrostrain relationships and plotting deformation curves. Such curves are plotted for the case of uniaxial tension  相似文献   

9.
Potentially unstable equilibrium is stabilized by means of a method of control based on the single-channel feedback principle using the characteristics of the solution of the complete nonlinear thermal convection equations. The convection equations are solved by a finite-difference method.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 6–11, July–August, 1990.  相似文献   

10.
The structural theory of short-term damage is generalized to the case where the undamaged components of an N-component laminar composite deform nonlinearly. The basis for this generalization is the stochastic elasticity equations for an N-component laminar composite with porous components whose skeleton deforms nonlinearly. Microvolumes of the composite components meet the Huber–Mises failure criterion. Damaged microvolume balance equations are derived for the physically nonlinear materials of the composite components. Together with the equations relating macrostresses and macrostrains of the laminar composite with porous nonlinear components, they constitute a closed-form system. This system describes the coupled processes of physically nonlinear deformation and microdamage. For a two-component laminar composite, algorithms for calculating the microdamage–macrostrain relationship and plotting deformation curves are proposed. Uniaxial tension curves are plotted for the case where microdamages occur in the linearly hardening component and do not in the linearly elastic component  相似文献   

11.
The damping of a monochromatic wave propagating at an angle to the magnetic field in an inhomogeneous plasma is studied. The nonlinear equations for resonance particles are solved in the drift approximation. The nonlinear damping decrement is calculated.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, Vol. 11, No. 1, pp 53–55, January–February, 1970.The author is grateful to R. Z. Sagdeev for his interest in the work.  相似文献   

12.
The theory of microdamageability of fibrous materials with transversely isotropic fibers is stated with account taken of the thermal effect. Microdamages in the isotropic matrix are simulated by pores empty or filled with particles of damaged material that resist compression. The fracture criterion for a microvolume of the matrix is assumed to have the Nadai–Schleicher form, which takes into account the difference between the tensile and compressive ultimate loads, with the ultimate strength being a random function of coordinates with a power or Weibull distribution. The stress–strain state and the effective properties of the material are determined from the thermoelastic equations for fibrous materials with a porous matrix. The deformation and microdamage equations are closed by the equations of porosity balance corrected for the thermal effect. For various types of loading, nonlinear relations are derived for the coupled processes of deformation of a fibrous material and microdamage of the matrix due to the thermal macrostrain. The effect of physical and geometrical parameters on these processes is studied.  相似文献   

13.
A microdamage theory is constructed for laminated fibrous materials with transversely isotropic fibers and a porous isotropic matrix under thermal actions. Microdamages in the matrix are simulated by pores, empty or filled with particles of the damaged material that resist compression. The fracture criterion for a microvolume of the matrix is assumed to have the Nadai–Schleicher form, which takes into account the difference between the tensile and compressive ultimate loads, with the ultimate strength being a random function of coordinates with a power or Weibull distribution. The stress–strain state and the effective properties of the material are determined from the thermoelastic equations for laminated fibrous materials with a porous matrix. The deformation and microdamage equations are closed by the porosity balance equations corrected for the thermal effect. For various types of loading, nonlinear relations are derived for the coupled processes of deformation of a laminated fibrous material and microdamage of the matrix due to the thermal macrostrain. The effect of physical and geometrical parameters on these processes is studied.  相似文献   

14.
Physical mechanisms of the rogue wave phenomenon   总被引:8,自引:0,他引:8  
A review of physical mechanisms of the rogue wave phenomenon is given. The data of marine observations as well as laboratory experiments are briefly discussed. They demonstrate that freak waves may appear in deep and shallow waters. Simple statistical analysis of the rogue wave probability based on the assumption of a Gaussian wave field is reproduced. In the context of water wave theories the probabilistic approach shows that numerical simulations of freak waves should be made for very long times on large spatial domains and large number of realizations. As linear models of freak waves the following mechanisms are considered: dispersion enhancement of transient wave groups, geometrical focusing in basins of variable depth, and wave-current interaction. Taking into account nonlinearity of the water waves, these mechanisms remain valid but should be modified. Also, the influence of the nonlinear modulational instability (Benjamin–Feir instability) on the rogue wave occurence is discussed. Specific numerical simulations were performed in the framework of classical nonlinear evolution equations: the nonlinear Schrödinger equation, the Davey–Stewartson system, the Korteweg–de Vries equation, the Kadomtsev–Petviashvili equation, the Zakharov equation, and the fully nonlinear potential equations. Their results show the main features of the physical mechanisms of rogue wave phenomenon.  相似文献   

15.
The solution of equations describing turbulent isobaric flow of a chemically reacting gas in a heated tube is investigated analytically. Solutions of the ordinary nonlinear differential equations are obtained for almost frozen flow by the perturbation method, and for almost equilibrium flow by an asymptotic method taking account of the zero and first approximations, Linear differential equations in variations are written down to find the subsequent approximations.Translated from Izvestiya Akademiya Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 8–14, July–August, 1973.  相似文献   

16.
The effective deformation properties and the stress–strain state of a material are determined on the basis of the stochastic equations of elastic theory, which allow for the random nature of microdamages. The problem on the stress-strain state of a porous transversally isotropic material under uniform loading with specified strains is solved using the model proposed. To this end, a numerical–analytical algorithm is proposed. This algorithm is based on the stochastic method of conditional moment functions and the combined iteration method, which is used to solve a transcendental equation. Using this approach, as an example, a nonlinear macrodeformation diagram is plotted and the behavior of a transversally isotropic porous material under biaxial tension is studied  相似文献   

17.
The basic problem of order reduction of nonlinear systems with time periodic coefficients is considered in state space and in direct second order (structural) form. In state space order reduction methods, the equations of motion are expressed as a set of first order equations and transformed using the Lyapunov–Floquet (L–F) transformation such that the linear parts of new set of equations are time invariant. At this stage, four order reduction methodologies, namely linear, nonlinear projection via singular perturbation, post-processing approach and invariant manifold technique, are suggested. The invariant manifold technique yields a unique ‘reducibility condition’ that provides the conditions under which an accurate nonlinear order reduction is possible. Unlike perturbation or averaging type approaches, the parametric excitation term is not assumed to be small. An alternate approach of deriving reduced order models in direct second order form is also presented. Here the system is converted into an equivalent second order nonlinear system with time invariant linear system matrices and periodically modulated nonlinearities via the L–F and other canonical transformations. Then a master-slave separation of degrees of freedom is used and a nonlinear relation between the slave coordinates and the master coordinates is constructed. This method yields the same ‘reducibility conditions’ obtained by invariant manifold approach in state space. Some examples are given to show potential applications to real problems using above mentioned methodologies. Order reduction possibilities and results for various cases including ‘parametric’, ‘internal’, ‘true internal’ and ‘true combination resonances’ are discussed. A generalization of these ideas to periodic-quasiperiodic systems is included and demonstrated by means of an example.  相似文献   

18.
Chaotic Analysis of Nonlinear Viscoelastic Panel Flutter in Supersonic Flow   总被引:2,自引:0,他引:2  
In this paper chaotic behavior of nonlinear viscoelastic panels in asupersonic flow is investigated. The governing equations, based on vonKàarmàn's large deflection theory of isotropic flat plates, areconsidered with viscoelastic structural damping of Kelvin's modelincluded. Quasi-steady aerodynamic panel loadings are determined usingpiston theory. The effect of constant axial loading in the panel middlesurface and static pressure differential have also been included in thegoverning equation. The panel nonlinear partial differential equation istransformed into a set of nonlinear ordinary differential equationsthrough a Galerkin approach. The resulting system of equations is solvedthrough the fourth and fifth-order Runge–Kutta–Fehlberg (RKF-45)integration method. Static (divergence) and Hopf (flutter) bifurcationboundaries are presented for various levels of viscoelastic structuraldamping. Despite the deterministic nature of the system of equations,the dynamic panel response can become random-like. Chaotic analysis isperformed using several conventional criteria. Results are indicative ofthe important influence of structural damping on the domain of chaoticregion.  相似文献   

19.
In the calculation of periodic oscillations of nonlinear systems –so-called limit cycles – approximative and systematic engineeringmethods of linear system analysis are known. The techniques, working inthe frequency domain, perform a quasi-linearization of the nonlinear system,replacing nonlinearities by amplitude-dependent describing functions.Frequently, the resulting equations for the amplitude and frequency ofpresumed limit cycles are solved directly by a graphical procedure in aNyquist plane or by solving the nonlinear equations or a parameteroptimization problem. In this paper, an indirect numerical approach isdescribed which shows that, for a system of nonlinear differentialequations, the eigenvalues of the quasi-linear system simply indicateall limit cycles and, additionally, yield stability regions for thelinearized case. The method is applicable to systems with multiplenonlinearities which may be static or dynamic. It is demonstrated foran example of aircraft nose gear shimmy dynamics in the presence ofdifferent nonlinearities and the results are compared with those fromsimulation.  相似文献   

20.
Nonlinear planar oscillations of suspended cables subjected to external excitations with three-to-one internal resonances are investigated. At first, the Galerkin method is used to discretize the governing nonlinear integral–partial-differential equation. Then, the method of multiple scales is applied to obtain the modulation equations in the case of primary resonance. The equilibrium solutions, the periodic solutions and chaotic solutions of the modulation equations are also investigated. The Newton–Raphson method and the pseudo-arclength path-following algorithm are used to obtain the frequency/force–response curves. The supercritical Hopf bifurcations are found in these curves. Choosing these bifurcations as the initial points and applying the shooting method and the pseudo-arclength path-following algorithm, the periodic solution branches are obtained. At the same time, the Floquet theory is used to determine the stability of the periodic solutions. Numerical simulations are used to illustrate the cascades of period-doubling bifurcations leading to chaos. At last, the nonlinear responses of the two-degree-of-freedom model are investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号