首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 78 毫秒
1.
青藏高原积雪变化趋势及其与气温和降水的关系   总被引:6,自引:5,他引:6  
柯长青  李培基 《冰川冻土》1997,19(4):289-294
根据60个地面基本气象台站1957 ̄1990年逐日雪深,月平均气温,月降水量观测记录,用ARMA(p,q)模型检验了青藏高原积雪变化趋势。结果表明,高原积雪变化呈增加趋势,与南极大陆及格陵兰冰盖表面雪积累率的增加相一致。  相似文献   

2.
青藏高原冬春季积雪对亚洲夏季风降水影响的研究   总被引:3,自引:1,他引:3  
王叶堂  何勇  侯书贵 《冰川冻土》2008,30(3):452-460
青藏高原(以下简称高原)积雪具有明显的季节、年际和年代际变化特征, 是影响亚洲夏季风降水的重要因子之一. 高原冬春季积雪异常通过引起高原地表反射率、 温度和感热的变化, 以及春末融雪吸热和增加土壤湿度而影响大气环流的变化, 最终引起亚洲夏季风降水的变化. 从统计分析、 气候诊断和数值模拟实验对高原冬春季积雪对亚洲夏季风降水影响的研究进展做了概括评述, 探讨了其可能影响的物理机制, 并对今后研究方向进行展望.  相似文献   

3.
青藏高原冬春季积雪异常与西南地区夏季降水的关系   总被引:3,自引:1,他引:3  
选取1961-2007年青藏高原冬、春季积雪日数资料和西南地区夏季降水资料,对高原积雪和降水作奇异值分解(SVD)分析.结果表明:冬春季高原积雪对西南地区夏季旱涝有重要的影响.冬、春季高原积雪的不同分布将造成后期西南地区夏季降水分布出现差异.西南地区夏季降水对冬季高原积雪异常最敏感的区域主要是四川东北部、重庆、西藏中西部,对春季积雪异常最敏感的区域主要位于四川东部、重庆、贵州东北部,以及西藏中东部.与降水敏感区相对应的冬季高原积雪分布的关键区是西藏中西部和青海中南部至四川西北部地区,春季则转变为西藏西部和青海部分地区.总的来说,冬季高原积雪的异常变化比春季对西南地区夏季降水的影响更为明显.因此,前期青藏高原积雪是西南地区夏季降水预测中的一个重要信号,对夏季西南地区降水有一定的指示和预测意义;冬季高原积雪日数尤其具有预报指示意义,可作为一个重要的预测指标.  相似文献   

4.
利用青藏高原气象台站观测的积雪和冻土资料,建立了高原积雪和季节冻融层1965—2004年的变化序列,通过滑动T平均、M-K检验、动力学分割算法(BG算法)等方法检验出高原积雪没有发生明显的突变过程,而高原季节冻融层在1987年前后有一次明显的突变,冻结深度减少比较显著.当高原积雪偏少时,华南和西南降水偏多,而当高原冻结较厚时,全国的降水几乎都偏少.通过计算高原积雪和季节冻融层与全国夏季降水的单因子相关和复相关发现,积雪和季节性冻土对中国夏季降水都有一定的可预测性,但是如果共同考虑两个因子的影响,则能够提高夏季降水预测的准确率.考虑两个因子的共同影响,有3个明显的相关带,分别是北部沿大兴安岭经太行山北部到陕北最后到河西走廊,中部在长江中下游地区,南部则是沿武夷山经南岭到云贵高原中部.  相似文献   

5.
青藏高原积雪异常的持续性研究   总被引:12,自引:8,他引:12  
韦志刚 《冰川冻土》2001,23(3):225-230
选取青海省和西藏自治区境内的72个气象站,自建站至1999年12月逐日观观测的积雪深度资料,规定观测到地面有0.5cm以上积雪深度的日子作为积雪日,分别统计了月、冬春、年的积雪日数,通过对积雪日数的分析,确定出高原冬春积雪的异常年份。分析了这些异常年份高原积雪的持续特征,结果表明,高原冬春总体积雪的异常主要是由11月至翌年3月的积雪异常决定的,高原冬春的积雪异常和春末夏初的积雪异常是不相一致的;一般来讲,高原积雪负异常至少持续4个月,大多数般到3月份就结束了;高原冬春总体积雪的正负异常都很难持续到春末夏初,高原冬春异常多积雪的大规模消融期在2月末到3月初。  相似文献   

6.
利用中国陆地生态系统通量观测研究网络的玛曲站观测的一次降雪过程的资料,对青藏高原东部边缘冬季的降雪、积雪过程的辐射特征进行了分析.研究结果表明;积雪期晴天和降雪过程的向上短波辐射的峰值分别约为降雪前晴天的3和2倍.无积雪晴天地表反射率主要分布在0.175~0.36,新雪地表反射率主要分布在0.8~0.9.大气逆辐射变化较小,降雪过程的最大,积雪时的最小.地表长波辐射则为降雪前最大,降雪时最小.积雪覆盖的晴天比无积雪时的净辐射变化幅度减小,且早上由负转正的时间推迟.  相似文献   

7.
2000-2005年青藏高原积雪时空变化分析   总被引:10,自引:6,他引:10  
王叶堂  何勇  侯书贵 《冰川冻土》2007,29(6):855-861
利用MODIS卫星反演的积雪资料以及同期气象资料,分析了2000-2005年青藏高原积雪分布特征、年际变化及其与同期气温和降水的关系,结果表明:青藏高原积雪分布极不均匀,四周山区多雪,腹地少雪;高原积雪期主要集中在10月到翌年5月;2000-2005年高原积雪年际变化差异较大,积雪面积总体上呈现冬春季减少、夏秋季增加的趋势;气温和降水是影响高原积雪变化的基本因子.冬季,高原积雪面积变化对降水更为敏感;春季,气温是影响高原积雪面积变化更主要的因素.  相似文献   

8.
用EOF方法研究青藏高原积雪深度分布与变化   总被引:13,自引:10,他引:13  
柯长青 《冰川冻土》1998,20(1):64-67
对青藏高原1978~1987年SMMR微波候积雪深度资料、55个地面基本气象台站1963~1992年逐日积雪深度记录进行了EOF分析.结果表明,青藏高原积雪空间分布极不均匀,四周多雪,特别是东西两侧多雪与广大腹地少雪形成鲜明对比.高原东部是高原积雪年际变化最显著的地区,它主导了整个高原积雪的年际变化,并且与西部多雪区年际波动呈反位相关系.从60年代到80年代积雪年际波动幅度有明显增加的趋势  相似文献   

9.
余锦华  建军 《水文》2006,26(1):12-17,23
利用1980~2002年青藏高原月平均地表温度、1957~2002年我国华北地区104站月降水,分析了青藏高原地表温度与华北以及各分区汛期(7、8月)降水的可能联系,结果表明,青藏高原5月地表温度与华北地区汛期降水具有显著的正相关,高相关区域位于高原的东北部和西南部。华北地区汛期降水偏少年,青藏高原5月地温以负距平为主;降水偏多年,青藏高原5月地温为大范围的正距平,距平中心也位于高原的东北和西南部。SVD的分析表明,青藏高原5月地表温度和华北地区汛期降水的第一典型场表现出一致的变化特点,前者的分布型态与华北地区干旱或洪涝对应的合成分布以及相关系数场相似,高值区域分别位于高原的东北部和西南部地区,后者的高值区域,位于华北中部和东部地区。华北不同区域汛期降水与青藏高原地表温度的相关有明显的差异,华北中部和东部与5月高原地温的正相关最显著,其它地区与上年10~12月地温的负相关最显著,同时,影响各分区夏季降水的高原地温关键区也有所不同。  相似文献   

10.
青藏高原陆表特征与中国夏季降水的关系研究   总被引:1,自引:5,他引:1  
高荣  韦志刚  钟海玲 《冰川冻土》2017,39(4):741-747
利用青藏高原72个站逐日积雪、冻土观测资料,AVHRR归一化植被指数(NDVI)和全国550个站逐日降水资料,分析了青藏高原陆表特征与中国夏季降水的关系。结果表明,我国夏季降水在华北和东北南部,长江中下游和华南地区降水空间一致性较好,相邻站点间降水变化趋势近似。华南、长江中下游和淮河降水呈增加趋势,其中长江中下游每10年增加37 mm,但华北降水呈减少趋势。华南、长江中下游和华北对高原积雪、冻土和植被的变化均较为敏感,而淮河仅对高原植被变化较为敏感。利用高原积雪、冻土和植被建立了代表高原地表特征的变化序列,其对长江中下游、淮河、华北夏季降水均有较好指示意义,与夏季降水的相关系数由南到北表现为"负-正-负"的分布特征。最后,提出一种高原陆表状况影响中国夏季降水的概念模型:高原冬春积雪偏多(少)、冬季冻土偏厚(薄)、春季植被偏多(少)会使得夏季高原地区土壤湿度偏大(小),高原地表感热偏弱(强),从而使得南亚高压和西太副高偏弱(强),南海季风偏弱(强),长江流域降水偏多(少),华南和华北地区降水偏少(多)。  相似文献   

11.
青藏高原积雪、冻土对中国夏季降水影响研究   总被引:2,自引:8,他引:2  
利用RegCM3模式,通过计算青藏高原不同积雪、冻土年的气候状况,分析了高原地区不同积雪状况下土壤冻结差异对中国夏季降水的影响及其机理.结果表明:RegCM3模式能够较好的模拟不同积雪状态下高原土壤冻结差异对中国夏季降水的影响.多雪年当高原土壤冻结较厚时,在长江流域和西北地区中部降水偏多,东北地区、华北地区、华南地区、...  相似文献   

12.
利用西北地区121个气象站1961-2011年降水量资料, 分析了西北地区春季降水的基本气候特征;通过EOF、REOF、功率谱等方法, 对西北地区春季降水的时空特性进行了研究, 用Mann-Kendall检验法检验西北地区春季降水序列是否存在突变现象.结果表明: 西北地区春季降水空间分布极不均匀, 其空间分布特征是东南部和西北部为多雨区、中间为少雨区.西北地区春季降水在第一空间尺度上为全区一致, 在第二空间尺度上可分为2个自然气候区, 在第三空间尺度上可分为6个自然气候区.从年代际变化来看, 1980年代是近半个世纪来降水最多的10 a, 1970年代是降水最少的10 a;西北地区春季降水的年际变率十分显著, 降水最多的年份是最少年份的3倍多. 1961-2011年间西北地区春季降水发生了明显的突变: 1973年出现了一次趋于减少的突变, 1985年出现了一次趋于增多的突变. 18~19 a的长周期是其主要周期, 其次是5 a和7 a的短周期. 未来20 a西北地区春季降水量呈缓慢下降的趋势.  相似文献   

13.
北半球雪盖与我国夏季降水的相关分析   总被引:5,自引:0,他引:5  
王光宇  曾群柱 《冰川冻土》1994,16(2):181-184
本用1967-1983年北半球卫星雪盖资料,对北半球北美、欧亚和青藏高原三个区域雪盖与我国东部地区夏季降水进行了相关分析。分析表明,三个区域夏季雪盖与夏季降水,以欧亚雪盖与降水的相关性最好,与青茂高原的雪盖相关性最小;北美冬、夏季雪盖与降水相关分布有着某种相反的分布,而青藏高原冬、夏季积雪与降水相关分布却有着某种相似的分布。  相似文献   

14.
青藏高原季节冻土的气候学特征   总被引:3,自引:2,他引:3  
青藏高原季节最大冻土深度变化特征是研究寒区陆面过程的重要方面. 利用青藏高原地区35个地面站1961-1998年最大冻土深度的观测资料及5 cm土壤温度资料, 分析了青藏高原地区土壤季节最大冻结深度时空变化特征. 结果显示: 青藏高原土壤季节最大冻结深度度呈现明显的变化规律, 20世纪60年代至80年代中期土壤季节最大冻结深度相对处于一个增大期, 80年代中期至今土壤季节最大冻结深度在减小. 冻结期间5 cm土壤累积负温距平指标能够较好的描述土壤季节最大冻结深度变化特征, 土壤季节最大冻结深度也是高原地区地面热源强度一个较好的表征参数.  相似文献   

15.
青藏高原冬春积雪年际振荡成因分析   总被引:4,自引:5,他引:4  
韦志刚  黄荣辉  陈文 《冰川冻土》2005,27(4):491-497
通过对高原冬春积雪异常年气温、降水和环流特征的分析,结果发现:从年际变化来讲,高原冬春积雪和冬春气温是明显的负相关,与降水呈正相关,高原冬春积雪的年际变化与前冬11月、12月高原降水的变化基本一致;1983年前,高原冬春积雪的偏多主要对应于高原冬春气温的偏低,积雪的偏少则主要对应于高原冬春降水的偏少;而自1984年后,高原冬春积雪的偏多主要对应于高原冬春降水的偏多,积雪的偏少则主要对应于高原冬春气温的偏高.多雪年前冬,副热带高压明显偏强,欧洲槽加深,乌山脊加强,东亚大槽从东北向西南明显倾斜,我国南海和阿拉伯海西岸各有一反气旋距平环流,而高原南部、印度半岛到孟加拉湾为一明显的气旋距平环流,有利于洋面暖湿气流抬升爬上高原;另一方面,从西伯利亚向我国出现北风距平,同时我国北方地区出现东风距平,这一形势使得西伯利亚冷空气多流向高原,冷暖空气在高原交汇,产生降雪.同时这种冷空气流保证了高原温度偏低,因而冬春高原多雪;少雪年前冬,副热带高压明显偏弱,欧洲槽变浅,乌山脊减弱,东亚大槽比较竖直,南海地区和阿拉伯海为气旋环流距平,而高原南侧为反气旋环流距平,西伯利亚为南风距平,形势基本与多雪年相反.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号