首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Current methods in alleviating the wall deposition problem in spray drying emphasize mainly controlling the stickiness of the drying particles and less attention is placed on the properties of the dryer wall. In this experimental study, the effect of wall surface properties on the deposition mechanism has been investigated. Properties considered in classifying different wall materials were surface energy, roughness, and dielectric properties. The model solution contained sucrose, representing low-molecular-weight sugars commonly encountered in spray drying of fruit and vegetable juices. The effect of wall properties on deposition was explored at different drying rates producing particles of different surface rigidity. Larger surface roughness produced higher deposition fluxes for particles with high impact velocity and moisture. Surface energy and surface roughness were found to have no significant effect for dry rigid particles at the middle and bottom elevation of the drying chamber. However, material with lower surface energy (Teflon) exhibited less deposition for rubbery particles at such elevations. Analysis shows that dielectric wall material (Teflon) tends to enhance deposition of dry particles because of attrition at the surface. Higher wall temperature was found to produce slightly more deposition. The results of this work give a general indication of the effect of wall material on the deposition problem and provide the fundamental understanding for further studies along this line. Proper selection of dryer wall material will provide potential alternatives for reducing the deposition problem.  相似文献   

2.
K. Kota 《Drying Technology》2013,31(8):993-1001
The pattern of wall deposits in a pilot-scale spray dryer has been studied, using skim milk, by changing the flow rate to the nozzle and measuring the resultant deposition fluxes at different positions inside the dryer. The solids concentration was maintained at 30%. The deposition was measured at three locations of the conical section and in the cylindrical section of the spray dryer. Particle deposition can be either due to the inertia of the particles or turbulent diffusion, and it is not immediately obvious which of these mechanisms is dominant. Inertial deposition appeared to be present mainly at the bottom location of the conical section and was the largest amount in quantitative terms, being at least an order of magnitude larger compared with diffusion deposition, which seemed to be dominant on the side (cylindrical) walls of the spray dryer. In addition to the above observations, the deposition patterns in the conical section have been quantified. The relative deposition flux, in m?2, which is the ratio of the deposition flux, in g m?2 h?1, to the solids flow rate into the dryer, in g h?1, was between 0.04 and 0.09 m?2 at a solids concentration of 8.8% and between 0.15 and 0.4 m?2 at a solids concentration of 30%. The fused appearance of the microstructure in the wall deposits of skim milk powder, as seen in the Micro-CT study, suggests that re-entrainment of the wall deposits is unlikely.  相似文献   

3.
The pattern of wall deposits in a pilot-scale spray dryer has been studied, using skim milk, by changing the flow rate to the nozzle and measuring the resultant deposition fluxes at different positions inside the dryer. The solids concentration was maintained at 30%. The deposition was measured at three locations of the conical section and in the cylindrical section of the spray dryer. Particle deposition can be either due to the inertia of the particles or turbulent diffusion, and it is not immediately obvious which of these mechanisms is dominant. Inertial deposition appeared to be present mainly at the bottom location of the conical section and was the largest amount in quantitative terms, being at least an order of magnitude larger compared with diffusion deposition, which seemed to be dominant on the side (cylindrical) walls of the spray dryer. In addition to the above observations, the deposition patterns in the conical section have been quantified. The relative deposition flux, in m-2, which is the ratio of the deposition flux, in g m-2 h-1, to the solids flow rate into the dryer, in g h-1, was between 0.04 and 0.09 m-2 at a solids concentration of 8.8% and between 0.15 and 0.4 m-2 at a solids concentration of 30%. The fused appearance of the microstructure in the wall deposits of skim milk powder, as seen in the Micro-CT study, suggests that re-entrainment of the wall deposits is unlikely.  相似文献   

4.
This study investigates how the morphology of spray-dried particles is related to the formulation and properties of the components in the formulation. Further, the scale effects in comparisons of levitation-dried single particles and spray-dried particles in a lab-scale spray dryer have been addressed. The Drying Kinetics AnalyzerTM generates single particles from a levitated drop under simulated spray-drying conditions. A set of surface-active polymers (bovine serum albumin, hydroxypropyl methyl cellulose, and triblock co-polymer Poloxamer), in combination with lactose, were analyzed for their dynamic surface properties in solution, and their effect on particle morphology and surface composition were determined by low-vacuum SEM and XPS analyses. The morphology obtained in spray drying was reproduced in the single-particle drying. The surface compositions were also similar, but higher levels of surface-active materials were found at the surface of the single particles as compared to the spray-dried particles. Further, the adsorption rate of surface-active compounds at the drop surface estimated by dynamic surface tension was found to be an important parameter to estimate the surface composition at different drying scales. The particle morphology was primarily determined by the surface rheological properties of the feed solution and, to a lesser extent, by the surface composition.  相似文献   

5.
Wall deposition is one of the most conventional problems in the spray drying process. The operation of a spray dryer is affected by the wall deposition fluxes inside the equipment. In this study, computational fluid dynamic (CFD) simulation was used to investigate the effect of spray dryer geometry on wall deposition. A CFD model was developed for different geometries of spray dryer with a conical (case A) or a parabolic (cases B and C) bottom. The results implied that the parabolic geometry resulted in a lower deposition rate on the spray dryer walls. A comparison of results using the P-values (F-test) of the air velocity, in the conical and parabolic geometries, showed that there was a significant difference in air stability between them. The flow field in conical geometry case A was significantly more unstable, and parabolic geometry case C produced the most uniform airflow patterns. Moreover, the higher wall shear stress in case C, with lower values of the vorticity, would result in less wall deposition.  相似文献   

6.
Microencapsulation of spice oleoresin is a proven technology to provide protection against degradation of sensitive components present therein. The present work reports on the microencapsulation of cinnamon oleoresin by spray drying using binary and ternary blends of gum arabic, maltodextrin, and modified starch as wall materials. The microcapsules were evaluated for the content and stability of volatiles, entrapped and total cinnamaldehyde content for six weeks. A 4:1:1 blend of gum arabic:maltodextrin:modified starch offered a protection, better than gum arabic as seen from the t1/2; i.e., time required for a constituent to reduce to 50% of its initial value.  相似文献   

7.
Microencapsulation of spice oleoresin is a proven technology to provide protection against degradation of sensitive components present therein. The present work reports on the microencapsulation of cinnamon oleoresin by spray drying using binary and ternary blends of gum arabic, maltodextrin, and modified starch as wall materials. The microcapsules were evaluated for the content and stability of volatiles, entrapped and total cinnamaldehyde content for six weeks. A 4:1:1 blend of gum arabic:maltodextrin:modified starch offered a protection, better than gum arabic as seen from the t1/2; i.e., time required for a constituent to reduce to 50% of its initial value.  相似文献   

8.
An experimental study of spray drying was carried out aimed at improvement of the phospholipid microencapsulation process. Three kinds of wall materials, maltodextrin blended with sodium caseinate, gelatin, and soy protein, respectively, were used to prepare phospholipid emulsion. Through examining the emulsion stability, a stable emulsion with the sodium caseinate contained system was obtained under 2.5 of mass ratio between maltodextrin and sodium caseinate, 70–80°C of emulsification temperature, 2.5% of emulsifier concentration, and 40 MPa of homogenization pressure. Phospholipid microcapsules with a mean size of 62 µm in apparent geometric diameter and good fluidity, dispersion, and dissolubility were prepared under 140°C of air inlet temperature, 30°C of feed temperature, and 20% of solids concentration. Up to 90% of phospholipid microencapsulation efficiency is achieved. In addition, phospholipid microcapsules have good dissolubility, fine appearance, and excellent fluidity and dispersion.  相似文献   

9.
10.
Lactose crystallization may occur during spray drying, depending on the operating conditions for drying, and this work reviews previous and new evidence for the effects of different additives or plasticizers on retarding or accelerating the rate of crystallization. The effects of different operating conditions during spray drying are also considered in the experimental work reviewed and performed here, which was mainly carried out with Buchi B-290 laboratory-scale spray dryers (Buchi, Flawil, Switzerland), although some work on pilot-scale equipment is also discussed. The additives used and reviewed in this article include milk proteins, such as casein and whey protein isolate, polyethylene glycol, and ascorbic acid. The key physical properties, such as glass transition temperature and drying characteristics of the material, are discussed, allowing degrees of amorphicity in spray-dried lactose to be controlled over a wide range, from close to 0% to nearly 100%.  相似文献   

11.
12.
The wall deposition phenomenon in a pilot-scale spray dryer was investigated based on mathematical modeling and experimental trials. For this purpose, the governing equations were obtained and solved numerically by applying a mathematical modeling technique and an open-source computational fluid dynamics (CFD) software. The wall deposition, velocity distribution of the existing phases, and droplet trajectory in the drying chamber were determined. The effect of the operating parameters including the feed flow rate, inlet concentration of dissolved solid, and initial droplet diameter on the air flow pattern, droplet trajectory, and wall deposition was investigated. Through the experiments, the wall deposition of powder product in different positions of the drying chamber was measured. In modeling part of this study, we attempted to determine the effect of particle diameter on the percentage of wall deposition and the position where it occurred.

The model results obtained for wall deposition were compared with collected experimental data and good agreement was observed.  相似文献   

13.
《Drying Technology》2013,31(6):1261-1287
Abstract

Uniform and repeatable product characteristics are critical in the performance and acceptance of consumer products, and the spray drying process can have a major influence on achieving these characteristics. This article shares experiences in the Spray Drying of powdered detergent granules in Procter & Gamble. It looks at the influence of both process operation and process equipment design on product characteristics. Procter & Gamble (P&G) is a major global producer of consumer products in the areas of fabric and home care; personal and beauty care; health care; and snacks and beverages. Whilst different drying operations, and product quality measuring tools are mentioned by Genskow (Genskow, L.R.1 Considerations in Drying Consumer Products, Proceedings of 6th International Drying Symposium, Versailles, September, 1988; Keynote lecture, 39–46.) as being involved in all of the categories of Company production, I will concentrate on the counter-current Spray Drying process and controls, used in the manufacture of most of the detergent granules business of P&G. This area is the oldest and largest of the Company's core business activities. Innovative technology development is critical in continuing to satisfy the consumer need for performance and value. Use of modeling in the spray drying process is helping the Company to move faster in delivering these advanced technologies. And, through better understanding of the process, it is possible to minimize capital expenditure, and improve trouble-shooting ability across the global production facilities.  相似文献   

14.
Uniform and repeatable product characteristics are critical in the performance and acceptance of consumer products, and the spray drying process can have a major influence on achieving these characteristics. This article shares experiences in the Spray Drying of powdered detergent granules in Procter & Gamble. It looks at the influence of both process operation and process equipment design on product characteristics. Procter & Gamble (P&G) is a major global producer of consumer products in the areas of fabric and home care; personal and beauty care; health care; and snacks and beverages. Whilst different drying operations, and product quality measuring tools are mentioned by Genskow (Genskow, L.R.1 Considerations in Drying Consumer Products, Proceedings of 6th International Drying Symposium, Versailles, September, 1988; Keynote lecture, 39-46.) as being involved in all of the categories of Company production, I will concentrate on the counter-current Spray Drying process and controls, used in the manufacture of most of the detergent granules business of P&G. This area is the oldest and largest of the Company's core business activities. Innovative technology development is critical in continuing to satisfy the consumer need for performance and value. Use of modeling in the spray drying process is helping the Company to move faster in delivering these advanced technologies. And, through better understanding of the process, it is possible to minimize capital expenditure, and improve trouble-shooting ability across the global production facilities.  相似文献   

15.
The aim of this work was to compare the efficiency of different carrier agents (maltodextrin, gum arabic, starch sodium octenyl succinate, whey protein concentrate, and egg albumin) on the powder recovery and physicochemical properties of persimmon powders produced by spray drying. Moisture content, water activity, hygroscopicity, solubility index, total phenol retention, color parameters, particle size, morphology, crystalline state, and sorption isotherms of persimmon powders were determined. No powder was recovered when the persimmon pulp was spray dried alone. The amount of maltodextrin, gum arabic, starch sodium octenyl succinate, whey protein concentrate, and egg albumin needed to obtain a powder recovery of 70% was 45, 30, 30, 25, and 10%, respectively. The use of maltodextrin, gum arabic, and starch sodium octenyl succinate resulted in higher total polyphenol retention and better reconstitution properties, but the powders were paler than those with whey protein concentrate and egg albumin. All carriers could aid the formation of persimmon irregular spherical microcapsules. However, powders produced with maltodextrin and gum arabic had a smoother surface and a more spherical shape than powders produced with other carriers. In addition, powders produced with starch sodium octenyl succinate, whey protein concentrate, and egg albumin were more agglomerated and shriveled compared to those produced with maltodextrin and gum arabic. All experimental data of water adsorption were well fitted to the Guggenheim-Anderson-de Boer (GAB) model.  相似文献   

16.
Microencapsulation of anthocyanin pigment present in Garcinia indica Choisy was carried out with maltodextrin of various dextrose equivalents (DE 06, 19, 21, and 33) and other additives such as gum acacia and tricalcium phosphate to enhance the stability of the pigment. The microencapsulated pigment containing 5.0% maltodextrin DE 21, 0.25% gum acacia, and 0.25% tricalcium phosphate was found to have lowest hygroscopic moisture content (4.38%), highest antioxidant activity (69.90%), and highest anthocyanin content (485 mg/100 g). The glass transition temperature was 44.59°C. The sorption isotherms for microencapsulated powder showed that the samples were stable up to water activity less than 0.43. The scanning electron microscope structures depicted that the particle size ranged from 5 to 50 μm with smooth spheres. Storage at 4°C increased the half-life twofold compared to that of the spray-dried product kept at ambient temperature (25°C).  相似文献   

17.
The aim of this study is to develop the spray freeze drying process and its hardware and to investigate its capabilities to dry thermosensible substances such as pharma-proteins at normal and low pressures. As the result, the spray freeze fluidized–bed dryer was constructed. During the study, the drying kinetic comparison between classical and spray freeze–drying technologies was done. Spray freeze drying has shown short process times and allows advanced control, product particle shape and size uniformity, and high solubility. This shows that the fluidized-bed freeze-drying process could be an alternative for classical freeze-drying processes. Identified problems are the low yield of the primary drying phase and the strong electrostatic effects during the secondary drying step. However, the innovative process has shown an excellent capability to dry and stabilize the thermosensitive substances, such as pharma-proteins.  相似文献   

18.
Spray Freeze Drying in a Fluidized Bed at Normal and Low Pressure   总被引:3,自引:0,他引:3  
The aim of this study is to develop the spray freeze drying process and its hardware and to investigate its capabilities to dry thermosensible substances such as pharma-proteins at normal and low pressures. As the result, the spray freeze fluidized-bed dryer was constructed. During the study, the drying kinetic comparison between classical and spray freeze-drying technologies was done. Spray freeze drying has shown short process times and allows advanced control, product particle shape and size uniformity, and high solubility. This shows that the fluidized-bed freeze-drying process could be an alternative for classical freeze-drying processes. Identified problems are the low yield of the primary drying phase and the strong electrostatic effects during the secondary drying step. However, the innovative process has shown an excellent capability to dry and stabilize the thermosensitive substances, such as pharma-proteins.  相似文献   

19.
The objective of this work was to evaluate the effect of the type of wall material and the oil load on the microencapsulation of flaxseed oil by spray drying. Gum arabic, whey protein concentrate, and a modified starch were used to produce the microcapsules, each with four oil concentrations (10, 20, 30, and 40% oil, w/w, with respect to total solids), for a total of 12 tests. Initially, the feed emulsions were characterized for stability, viscosity, and droplet size. Then they were dried in a laboratory-scale spray dryer and the resulting particles were analyzed for encapsulation efficiency, lipid oxidation, moisture content, and bulk density. The increase in oil concentration led to the production of emulsions with larger droplets and lower viscosity, which directly affected powder properties, resulting in lower encapsulation efficiency and higher lipid oxidation. Among the three wall materials evaluated, the modified starch showed the best performance, with the highest encapsulation efficiency and lowest peroxide values.  相似文献   

20.
A spray dryer is the ideal equipment for the production of food powders because it can easily impart well-defined end product characteristics such as moisture content, particle size, porosity, and bulk density. Wall deposition of particles in spray dryers is a key processing problem and an understanding of wall deposition can guide the selection of operating conditions to minimize this problem. The stickiness of powders causes the deposition of particles on the wall. Operating parameters such as inlet air temperature and feed flow rate affect the air temperature and humidity inside the dryer, which together with the addition of drying aids can affect the stickiness and moisture content of the product and hence its deposition on the wall. In this article, an artificial neural network (ANN) method was used to model the effects of inlet air temperature, feed flow rate, and maltodextrin ratio on wall deposition flux and moisture content of lactose-rich products. An ANN trained by back-propagation algorithms was developed to predict two performance indices based on the three input variables. The results showed good agreement between predicted results using the ANN and the measured data taken under the same conditions. The optimum condition found by the ANN for minimum moisture content and minimum wall deposition rate for lactose-rich feed was inlet air temperature of 140°C, feed rate of 23 mL/min, and maltodextrin ratio of 45%. The ANN technology has been shown to be an excellent investigative and predictive tool for spray drying of lactose-rich products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号