首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Surface soil hydraulic properties are key factors controlling the partition of rainfall and snowmelt into runoff and soil water storage, and their knowledge is needed for sound land management. The objective of this study was to evaluate the effects of three land uses (native grass, brome grass and cultivated) on surface soil hydraulic properties under near‐saturated conditions at the St Denis National Wildlife Area, Saskatchewan, Canada. For each land use, water infiltration rates were measured using double‐ring and tension infiltrometers at ?0·3, ?0·7, ?1·5 and ?2·2 kPa pressure heads. Macroporosity and unsaturated hydraulic properties of the surface soil were estimated. Mean field‐saturated hydraulic conductivity (Kfs), unsaturated hydraulic conductivity at ?0·3 kPa pressure head, inverse capillary length scale (α) and water‐conducting macroporosity were compared for different land uses. These parameters of the native grass and brome grass sites were significantly (p < 0·1) higher than that of the cultivated sites. At the ?0·3 kPa pressure head, hydraulic conductivity of grasslands was two to three times greater than that of cultivated lands. Values of α were about two times and values of Kfs about four times greater in grasslands than in cultivated fields. Water‐conducting macroporosity of grasslands and cultivated fields were 0·04% and 0·01% of the total soil volume, respectively. Over 90% of the total water flux at ?0·06 kPa pressure head was transmitted through pores > 1·36 × 10?4 m in diameter in the three land uses. Land use modified near‐saturated hydraulic properties of surface soil and consequently may alter the water balance of the area by changing the amount of surface runoff and soil water storage. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

2.
Gerard Govers  Jan Diels 《水文研究》2013,27(25):3777-3790
Experimental work has clearly shown that the effective hydraulic conductivity (Ke) or effective infiltration rate (fe) on the local scale of a plot cannot be considered as constant but are dependent on water depth and rainfall intensity because non‐random microtopography‐related variations in hydraulic conductivity occur. Rainfall–runoff models generally do not account for this: models assume that excess water is uniformly spread over the soil surface and within‐plot variations are neglected. In the present study, we propose a model that is based on the concepts of microtopography‐related water depth‐dependent infiltration and partial contributing area. Expressions for the plot scale Ke and fe were developed that depend on rainfall intensity and runon from upslope (and thus on water depth). To calibrate and validate the model, steady state infiltration experiments were conducted on maize fields on silt loam soils in Belgium, with different stages and combinations of rainfall intensity and inflow, simulating rainfall and runon. Water depth–discharge and depth–inundation relationships were established and used to estimate the effect of inundation on Ke. Although inflow‐only experiments were found to be unsuitable for calibration, the model was successfully calibrated and validated with the rainfall simulation data and combined rainfall–runon data (R²: 0.43–0.91). Calibrated and validated with steady state infiltration experiments, the model was combined with the Green–Ampt infiltration equation and can be applied within a two‐dimensional distributed rainfall–runoff model. The effect of water depth–dependency and rainfall intensity on infiltration was illustrated for a hillslope. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
The increase of surface runoff at the plot scale caused by soil water repellency is a generally accepted phenomenon. However, to improve the understanding of the effect of water repellency on runoff at the catchment scale, spatio‐temporal dynamics of water repellency have to be analysed in more detail. The experimental setup of this study allowed the investigation of the relationship between water repellency and runoff generation on Quaternary and Tertiary sandy substrates while ensuring similar conditions in terms of terrain characteristics, meteorological and vegetation‐free conditions on both areas. Measurements of water drop penetration time and contact angle were carried out over a period from September 2003 to December 2005. Spatial variability of actual soil water repellency was related to heterogeneity of substrate and geomorphologic units, variations in time were related with the seasons and their meteorological conditions. To relate variable degrees of actual water repellency to surface runoff generation, both variables were measured in parallel at the plot scale (1 m × 1 m) and at the hillslope scale from September 2004 to December 2005. Soil water repellency of the Tertiary sands showed a temporal variability depending on the season, with the highest degree during summer and autumn. Variation of hydrophobicity between the seasons caused higher runoff coefficients in summer and autumn. Spatial heterogeneity of the soil water repellency revealed lower values in fine‐textured erosion rills and higher values for interrills and top areas. The measured runoff coefficients decreased from the scale of microplots to the hillslope scale due to infiltration in hydrophilic rills on the hillslope. The results suggest that improved hydrological modelling approaches on water‐repellent soils can be based on a geomorphological subdivision of the catchment area and seasonally varying infiltration parameters. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
An important element of evaluating a large wildfire is to assess its effects on the soil in order to predict the potential watershed response. After the 55 000 ha Hayman Fire on the Colorado Front Range, 24 soil and vegetation variables were measured to determine the key variables that could be used for a rapid field assessment of burn severity. The percentage of exposed mineral soil and litter cover proved to be the best predictors of burn severity in this environment. Two burn severity classifications, one from a statistical classification tree and the other a Burned Area Emergency Response (BAER) burn severity map, were compared with measured ‘ground truth’ burn severity at 183 plots and were 56% and 69% accurate, respectively. This study also compared water repellency measurements made with the water drop penetration time (WDPT) test and a mini‐disk infiltrometer (MDI) test. At the soil surface, the moderate and highly burned sites had the strongest water repellency, yet were not significantly different from each other. Areas burned at moderate severity had 1·5 times more plots that were strongly water repellent at the surface than the areas burned at high severity. However, the high severity plots most likely had a deeper water repellent layer that was not detected with our surface tests. The WDPT and MDI values had an overall correlation of r = ?0·64(p < 0·0001) and appeared to be compatible methods for assessing soil water repellency in the field. Both tests represent point measurements of a soil characteristic that has large spatial variability; hence, results from both tests reflect that variability, accounting for much of the remaining variance. The MDI is easier to use, takes about 1 min to assess a strongly water repellent soil and provides two indicators of water repellency: the time to start of infiltration and a relative infiltration rate. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

5.
Post‐wildfire runoff was investigated by combining field measurements and modelling of infiltration into fire‐affected soils to predict time‐to‐start of runoff and peak runoff rate at the plot scale (1 m2). Time series of soil‐water content, rainfall and runoff were measured on a hillslope burned by the 2010 Fourmile Canyon Fire west of Boulder, Colorado during cyclonic and convective rainstorms in the spring and summer of 2011. Some of the field measurements and measured soil physical properties were used to calibrate a one‐dimensional post‐wildfire numerical model, which was then used as a ‘virtual instrument’ to provide estimates of the saturated hydraulic conductivity and high‐resolution (1 mm) estimates of the soil‐water profile and water fluxes within the unsaturated zone. Field and model estimates of the wetting‐front depth indicated that post‐wildfire infiltration was on average confined to shallow depths less than 30 mm. Model estimates of the effective saturated hydraulic conductivity, Ks, near the soil surface ranged from 0.1 to 5.2 mm h?1. Because of the relatively small values of Ks, the time‐to‐start of runoff (measured from the start of rainfall), tp, was found to depend only on the initial soil‐water saturation deficit (predicted by the model) and a measured characteristic of the rainfall profile (referred to as the average rainfall acceleration, equal to the initial rate of change in rainfall intensity). An analytical model was developed from the combined results and explained 92–97% of the variance of tp, and the numerical infiltration model explained 74–91% of the variance of the peak runoff rates. These results are from one burned site, but they strongly suggest that tp in fire‐affected soils (which often have low values of Ks) is probably controlled more by the storm profile and the initial soil‐water saturation deficit than by soil hydraulic properties. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

6.
Soil water repellency (hydrophobicity) is a naturally occurring phenomenon that can be intensified by soil heating during fires. Fire‐induced water repellency, together with the loss of plant cover, is reportedly the principal source of increased surface runoff and accelerated erosion in burned soils. In this study, the surface water repellency of several soils affected by summer forest fires in northwest Spain was studied and compared with that of adjacent unburned soils. Soil water repellency was determined using the ethanol percentage test (MED). Most of the unburned soil samples exhibited water repellency that ranged from strong to very strong; only four of the unburned soil samples were non‐repellent. Water repellency in the unburned soils was significantly correlated with the organic carbon content (r = 0·64, p < 0·05). Overall, fires increased the surface water repellency in soils with previously low degrees of water repellency and caused little change in that of originally strongly hydrophobic soils. In order to examine in detail the changes in water repellency with temperature, three unburned soil samples were subjected to a controlled heating program. Water repellency increased between 25 and 220 °C, water repellency peaked between 220 and 240 °C and disappeared above 260–280 °C. Extrapolation of the results of the heating tests to field conditions suggested that the intensity of fire (temperature and time of residence) reached by most soils during fires is not too high. Based on the results, the determination of water repellency could be used as a simple test for the indirect estimation of the intensity levels reached on the soil surface during a fire. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

7.
Measurement of surface water runoff from plots of two different sizes   总被引:1,自引:0,他引:1  
Intensities and amounts of water infiltration and runoff on sloping land are governed by the rainfall pattern and soil hydraulic conductivity, as well as by the microtopography and soil surface conditions. These components are closely interrelated and occur simultaneously, and their particular contribution may change during a rainfall event, or their effects may vary at different field scales. The scale effect on the process of infiltration/runoff was studied under natural field and rainfall conditions for two plot sizes: small plots of 0·25 m2 and large plots of 50 m2. The measurements were carried out in the central region of Chile in a piedmont most recently used as natural pastureland. Three blocks, each having one large plot and five small plots, were established. Cumulative rainfall and runoff quantities were sampled every 5 min. Significant variations in runoff responses to rainfall rates were found for the two plot sizes. On average, large plots yielded only 40% of runoff quantities produced on small plots per unit area. This difference between plot sizes was observed even during periods of continuous runoff. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

8.
In north‐central Oklahoma eastern redcedar (Juniperus virginiana), encroachment into grassland is widespread and is suspected of reducing streamflow, but the effects of this encroachment on soil hydraulic properties are unknown. This knowledge gap creates uncertainty in understanding the hydrologic effects of eastern redcedar encroachment and obstructs fact‐based management of encroached systems. The objective of this study was to quantify the effects of eastern redcedar encroachment into tallgrass prairie on soil hydraulic properties. Leaf litter depth, soil organic matter, soil water repellency, soil water content, sorptivity, and unsaturated hydraulic conductivity were measured near Stillwater, OK, along 12 radial transects from eastern redcedar trunks to the center of the grassy intercanopy space. Eastern redcedar encroachment in the second half of the 20th century caused the accumulation of 3 cm of hydrophobic leaf litter near the trunks of eastern redcedar trees. This leaf litter was associated with increased soil organic matter in the upper 6 cm of soil under eastern redcedar trees (5.96% by mass) relative to the grass‐dominated intercanopy area (3.99% by mass). Water repellency was more prevalent under eastern redcedar than under grass, and sorptivity under eastern redcedar was 0.10 mm s?1/2, one seventh the sorptivity under adjacent prairie grasses (0.68 mm s?1/2). Median unsaturated hydraulic conductivity under grass was 2.52 cm h?1, four times greater than under eastern redcedar canopies (0.57 cm h?1). Lower sorptivity and unsaturated hydraulic conductivity would tend to decrease infiltration and increase runoff, but other factors such as rainfall interception by the eastern redcedar canopy and litter layer, and preferential flow induced by hydrophobicity must be examined before the effects of encroachment on streamflow can be predicted. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
Irregular wetting, water repellency, and preferential flow are well‐documented properties of coastal sandy podzols, though little is known about the effect of fire on unsaturated zone processes in this environment. This study investigates water repellency at and below the soil surface in two coastal sandy podzols following bushfire. Water drop penetration time tests were applied to burned and unburned soils at a high dune field site in South East Queensland, Australia. It was found that the mean water drop penetration time of the burned soil was four times that of the unburned soil, but both soils were largely non‐repellent. Post‐fire repellency peaked below the surface in a patchy layer, in contrast to the laterally extensive layer reported in other studies, and high organic matter content in the soil did not appear to significantly influence repellency post‐burn. Non‐parametric statistics were used to quantify the high spatial variability in water repellency, which was ultimately insufficiently captured by atypically large (n = 1000 drop) datasets. This study confirms the presence of naturally occurring repellency and patchy infiltration in sandy soils while demonstrating that conclusively describing the influence of fire is challenging in a soil with heterogeneous infiltration characteristics. With respect to this uncertainty, it appears that fire does not increase soil water repellency such that infiltration and runoff processes due to fire‐induced water repellency would differ post‐burn.  相似文献   

10.
Changing fire regimes and prescribed‐fire use in invasive species management on rangelands require improved understanding of fire effects on runoff and erosion from steeply sloping sagebrush‐steppe. Small (0·5 m2) and large (32·5 m2) plot rainfall simulations (85 mm h–1, 1 h) and concentrated flow methodologies were employed immediately following burning and 1 and 2 years post‐fire to investigate infiltration, runoff and erosion from interrill (rainsplash, sheetwash) and rill (concentrated flow) processes on unburned and burned areas of a steeply sloped sagebrush site on coarse‐textured soils. Soil water repellency and vegetation were assessed to infer relationships in soil and vegetation factors that influence runoff and erosion. Runoff and erosion from rainfall simulations and concentrated flow experiments increased immediately following burning. Runoff returned to near pre‐burn levels and sediment yield was greatly reduced with ground cover recovery to 40 per cent 1 year post‐fire. Erosion remained above pre‐burn levels on large rainfall simulation and concentrated flow plots until ground cover reached 60 per cent two growing seasons post‐fire. The greatest impact of the fire was the threefold reduction of ground cover. Removal of vegetation and ground cover and the influence of pre‐existing strong soil‐water repellency increased the spatial continuity of overland flow, reduced runoff and sediment filtering effects of vegetation and ground cover, and facilitated increased velocity and transport capacity of overland flow. Small plot rainfall simulations suggest ground cover recovery to 40 per cent probably protected the site from low‐return‐interval storms, large plot rainfall and concentrated flow experiments indicate the site remained susceptible to elevated erosion rates during high‐intensity or long duration events until ground cover levels reached 60 per cent. The data demonstrate that the persistence of fire effects on steeply‐sloped, sandy sagebrush sites depends on the time period required for ground cover to recover to near 60 per cent and on the strength and persistence of ‘background’ or fire‐induced soil water repellency. Published in 2009 by John Wiley & Sons, Ltd.  相似文献   

11.
Surfactants are chemical compounds that can change the contact angle of a water drop on solid surfaces and are commonly used to increase infiltration into water repellent soil. Since production fields with water repellent soil often contain areas of wettable soil, surfactants applied to such fields worldwide will likely be applied to wettable soil, with unknown consequences for irrigation‐induced erosion, runoff, or soil water relations. We evaluated surfactant and simulated sprinkler irrigation effects on these responses for three wettable, Pacific Northwest soils, Latahco and Rad silt loams, and Quincy sand. Along with an untreated control, we studied three surfactants: an alkyl polyglycoside (APG) in solution at a concentration of 18 g active ingredient (AI) kg?1, a block copolymer at 26 g kg?1, and a blend of the two at 43 g kg?1. From 2005 to 2009 in the laboratory, each surfactant was sprayed at a rate of 46·8 l ha?1 onto each soil packed by tamping into 1·2‐ by 1·5‐m steel boxes. Thereafter, each treated soil was irrigated twice at 88 mm h?1 with surfactant‐free well water. After each irrigation, runoff and sediment loss were measured and soil samples were collected. While measured properties differed among soils and irrigations, surfactants had no effect on runoff, sediment loss, splash loss, or tension infiltration, compared to the control. Across all soils, however, the APG increased volumetric water contents by about 3% (significant at p≤0·08) at matric potentials from 0 to ? 20 kPa compared to the control. With a decrease in the liquid–solid contact angle on treated soil surfaces, surfactant‐free water appeared able to enter, and be retained in pores with diameters ≥ 15 µm. All told, surfactants applied at economic rates to these wettable Pacific Northwest soils posed little risk of increasing either runoff or erosion or harming soil water relations. Moreover, by increasing water retention at high potentials, surfactants applied to wettable soils may allow water containing pesticides or other agricultural chemicals to better penetrate soil pores, thereby increasing the efficacy of the co‐applied materials. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
The repellency index (RI) defined as the adjusted ratio between soil‐ethanol, Se, and soil‐water, Sw, sorptivities estimated from minidisk infiltrometer experiments has been used instead of the widely used water drop penetration time and molarity of ethanol drop tests to assess soil water repellency. However, sorptivity calculated by the usual early‐time infiltration equation may be overestimated as the effects of gravity and lateral capillary are neglected. With the aim to establish the best applicative procedure to assess RI, different approaches to estimate Se and Sw were compared that make use of both the early‐time infiltration equation (namely, the 1 min, S1, and the short‐time linearization approaches), and the two‐term axisymmetric infiltration equation, valid for early to intermediate times (namely, the cumulative linearization and differentiated linearization approaches). The dataset included 85 minidisk infiltrometer tests conducted in three sites in Italy and Spain under different vegetation habitats (forest of Pinus pinaster and Pinus halepensis, burned pine forest, and annual grasses), soil horizons (organic and mineral), postfire treatments, and initial soil water contents. The S1 approach was inapplicable in 42% of experiments as water infiltration did not start in the first minute. The short‐time linearization approach yielded a systematic overestimation of Se and Sw that resulted in an overestimation of RI by a factor of 1.57 and 1.23 as compared with the cumulative linearization and differentiated linearization approaches. A new repellency index, RIs, was proposed as the ratio between the slopes of the linearized data for the wettable and hydrophobic stages obtained by a single water infiltration test. For the experimental conditions considered, RIs was significantly correlated with RI and WDPT. Compared with RI, RIs includes information on both soil sorptivity and hydraulic conductivity and, therefore, it can be considered more physically linked to the hydrological processes affected by soil water repellency.  相似文献   

13.
Soil hydrology was investigated in the Guadelperalón experimental watershed in order to determine the influence of land use and vegetation cover on runoff and infiltration within the Dehesa land system. Five soil–vegetation units were selected: (1) tree cover, (2) sheep trials, (3) shrub cover, (4) hillslope grass and (5) bottom grass. The results of the simulated rainfall experiments performed at an intensity of 56·6 mm h−1 during one hour on plots of 0·25 m2, and the water drop penetration time test indicate the importance of water repellency in the Dehesa land system under drought conditions. Low infiltration rates (c. 9–44 mm h−1) were found everywhere except at shrub sites and in areas with low grazing pressure. Soil water repellency greatly reduced infiltration, especially beneath Quercus ilex canopies, where fast ponding and greater runoff rates were observed. The low vegetation cover as a consequence of a prolonged drought and grazing pressure, in conjunction with the soil water repellency, induces high runoff rates (15–70 per cent). In spite of this, macropore fluxes were found in different locations, beneath trees, on shrub-covered surfaces, as well as at sites with a dominance of herbaceous cover. Discontinuity of the runoff fluxes due to variations in hydrophobicity causes preferential flows and as a consequence deeper infiltration, especially where macropores are developed. © 1998 John Wiley & Sons, Ltd.  相似文献   

14.
We collected soil‐hydraulic property data from the literature for wildfire‐affected soils, ash, and unburned soils. These data were used to calculate metrics and timescales of hydrologic response related to infiltration and surface runoff generation. Sorptivity (S) and wetting front potential (Ψf) were significantly different (lower) in burned soils compared with unburned soils, whereas field‐saturated hydraulic conductivity (Kfs) was not significantly different. The magnitude and duration of the influence of capillarity during infiltration was greatly reduced in burned soils, causing faster ponding times in response to rainfall. Ash had large values of S and Kfs but moderate values of Ψf, compared with unburned and burned soils, indicating ash has long ponding times in response to rainfall. The ratio of S2/Kfs was nearly constant (~100 mm) for unburned soils but more variable in burned soils, suggesting that unburned soils have a balance between gravity and capillarity contributions to infiltration that may depend on soil organic matter, whereas in burned soils the gravity contribution to infiltration is greater. Changes in S and Kfs in burned soils act synergistically to reduce infiltration and accelerate and amplify surface runoff generation. Synthesis of these findings identifies three key areas for future research. First, short timescales of capillary influences on infiltration indicate the need for better measurements of infiltration at times less than 1 min to accurately characterize S in burned soils. Second, using parameter values, such as Ψf, from unburned areas could produce substantial errors in hydrologic modeling when used without adjustment for wildfire effects, causing parameter compensation and resulting underestimation of Kfs. Third, more thorough measurement campaigns that capture soil‐structural changes, organic matter impacts, quantitative water repellency trends, and soil‐water content along with soil‐hydraulic properties could drive the development of better techniques for numerically simulating infiltration in burned areas.  相似文献   

15.
This study examines the effect of water repellency on controlling temporal variability of runoff generation mechanisms and soil detachment on metamorphic derived soils under dry‐Mediterranean climate. The research is carried out in an unburnt Mediterranean hillslope in souther Spain characterized by a patchy vegetation pattern and shallow soils. The Water Drop Penetration Time test (WDPT) is applied to measure water repellency at the end of summer (Sep‐2008), mid autumn (Nov‐2008) and mid winter (Feb‐2009). Rainfall simulations were used to obtain runoff generation and soil detachment in the same periods of time. The main shrub specie is Cistus monspeliensis which leaves a load of litter during the summer due to the lack of water. This great amount of organic material is accumulated under the shrubs triggering an extreme water repellence (WDPT > 6,000 s) that limits infiltration processes. This process is enforced due to the low soil water content at the end of dry season. Certain water repellency (WDPT > 1,500 s) is also observed on bare soil as consequence of their sandier texture and the accumulation of annual plants which die at the end of the wet season. Soil moisture increases during the autumn and water repellency disappears in both shrub and bare soil at the middle of the wet season (WDPT < 5 s). The main consequence is that the temporal trend of water repellency controls the mechanism and frequency of runoff generation and, hence, soil detachment. At the end of the summer, Hortonian mechanisms predominates when water repellency is extreme, even in soils under Cistus monspeliensis where runoff generation can reach higher peaks of overland flow and sediment concentration. Conversely, only the saturation of soil could generate runoff during the wet season being this quite less frequent in bare soil and absent in shrub. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
Water repellency (WR) from fire‐affected soils can affect infiltration processes and increase runoff rates. We investigated the effects of fire‐induced changes in soil WR and the related soil hydrological response after one of the largest wildfires in Spain in recent years. The vertical distribution of WR in soil profiles was studied under oak and pine forests and the wetting pattern was analysed after rainfall simulations (85 mm h?1 during 60 min). After burning, the persistence of WR in soils under oaks increased in the upper 0–5 cm of soil in comparison with pre‐fire WR, but no significant changes were observed under pines. After a fire, WR was stronger and the thickness of the water‐repellent layer increased in soils under pines in the upper 0–16 cm of soil. The hydrophobic layer was thinner under oaks, where no strong to extremely water‐repellent samples were observed below 12 (in burnt soils) and 8 cm (in unburnt soils). Uniform wetting was observed through soil depth in burnt and unburnt soils under oaks, as a consequence of the prevailing matrix flux infiltration. Water was mostly stored in the upper few centimetres and soil became rapidly saturated, favouring a continuous rise in the runoff rate during the experiments. Moisture profiles under pines showed a heterogeneous wetting pattern, with highly irregular wetting fronts, as a result of wettable and water‐repellent three‐dimensional soil patches. In this case, runoff rates on burnt plots increased in relation to unburnt plots, but runoff generation reached a steady state after 25–30 min of simulated rainfall at an intensity of 85 mm h?1. Rainfall water infiltrated over a small part of the ponded area, where the vertical pressure of the water column overcame the WR. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
Impact studies of catchment management in the developing world rarely include detailed hydrological components. Here, changes in the hydrological response of a 200‐ha catchment in north Ethiopia are investigated. The management included various soil and water conservation measures such as the construction of dry masonry stone bunds and check dams, the abandonment of post‐harvest grazing, and the establishment of woody vegetation. Measurements at the catchment outlet indicated a runoff depth of 5 mm or a runoff coefficient (RC) of 1·6% in the rainy season of 2006. Combined with runoff measurements at plot scale, this allowed calculating the runoff curve number (CN) for various land uses and land management techniques. The pre‐implementation runoff depth was then predicted using the CN values and a ponding adjustment factor, representing the abstraction of runoff induced by the 242 check dams in gullies. Using the 2006 rainfall depths, the runoff depth for the 2000 land management situation was predicted to be 26·5 mm (RC = 8%), in line with current RCs of nearby catchments. Monitoring of the ground water level indicated a rise after catchment management. The yearly rise in water table after the onset of the rains (ΔT) relative to the water surplus (WS) over the same period increased between 2002–2003 (ΔT/WS = 3·4) and 2006 (ΔT/WS >11·1). Emerging wells and irrigation are other indicators for improved water supply in the managed catchment. Cropped fields in the gullies indicate that farmers are less frightened for the destructive effects of flash floods. Due to increased soil water content, the crop growing period is prolonged. It can be concluded that this catchment management has resulted in a higher infiltration rate and a reduction of direct runoff volume by 81% which has had a positive influence on the catchment water balance. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
Soil water repellency may be characterized in terms of the delayed infiltration time of a water droplet resting on the soil surface, which is, water drop penetration time (WDPT), or repellency persistence. Such repellency persistence varies nonlinearly with soil water content (θg), although no models have been proposed to reproduce the variation of WDPT with θg in soils. Dynamic factor analysis (DFA) is used to identify two common patterns of unexplained variability in a scattered dataset of WDPT versus θg measurements. A four‐parameter lognormal distribution was fitted to both common patterns obtained by DFA, and these were combined additively in a weighted multiple linear bimodal model. We show how such an empirical model is capable of reproducing a large variety of WDPT versus θg curve shapes (N = 80) both within a wide range of measured WDPTs (0–17 000 s) and for samples with organic matter content ranging from 21·7 to 80·6 g (100 g)?1. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
The occurrence of water ponding on soil surfaces during and after heavy rainfall produces surface run‐off or surface water accumulation in low‐lying areas, which might reduce the water supply to soils and result in a reduction of the soil water that plants can use, especially in arid climates. On Mongolian rangeland, we observed ponded water on the surface of a specific soil condition subjected to a heavy rainfall of 30 mm/hr. By contrast, ponded water was not observed for the same type of soil where livestock grazing had been removed for 6–8 years via a fence or for nearby soil containing less clay. We measured the infiltration rate (the saturated hydraulic conductivity of the surface soil, Ks) of the three sites by applying ponded water on the soil surface (an intake rate test). The results showed that Ks in the rangeland was lower than the rainfall intensity in the site where water ponded on the soil surface; however, Ks of the soil inside of the fence has recovered to 3 times that of the soil outside of the fence to exceed the rainfall intensity. Heavy rainfall that exceeds the infiltration rate occurs several times a year at the livestock grazing site where we observed ponded water. Slight water repellency of the soil reduces rain infiltration to increase the possibility of surface ponding for the soil.  相似文献   

20.
Soil surface crusts are widely reported to favour Hortonian runoff, but are not explicitly represented in most rainfall‐runoff models. The aim of this paper is to assess the impact of soil surface crusts on infiltration and runoff modelling at two spatial scales, i.e. the local scale and the plot scale. At the local scale, two separate single ring infiltration experiments are undertaken. The first is performed on the undisturbed soil, whereas the second is done after removal of the soil surface crust. The HYDRUS 2D two‐dimensional vertical infiltration model is then used in an inverse modelling approach, first to estimate the soil hydraulic properties of the crust and the subsoil, and then the effective hydraulic properties of the soil represented as a single uniform layer. The results show that the crust hydraulic conductivity is 10 times lower than that of the subsoil, thus illustrating the limiting role the crust has on infiltration. Moving up to the plot scale, a rainfall‐runoff model coupling the Richards equation to a transfer function is used to simulate Hortonian overland flow hydrographs. The previously calculated hydraulic properties are used, and a comparison is undertaken between a single‐layer and a double‐layer representation of the crusted soil. The results of the rainfall‐runoff model show that the soil hydraulic properties calculated at the local scale give acceptable results when used to model runoff at the plot scale directly, without any numerical calibration. Also, at the plot scale, no clear improvement of the results can be seen when using a double‐layer representation of the soil in comparison with a single homogeneous layer. This is due to the hydrological characteristics of Hortonian runoff, which is triggered by a rainfall intensity exceeding the saturated hydraulic conductivity of the soil surface. Consequently, the rainfall‐runoff model is more sensitive to rainfall than to the subsoil's hydrodynamic properties. Therefore, the use of a double‐layer soil model to represent runoff on a crusted soil does not seem necessary, as the increase of precision in the soil discretization is not justified by a better performance of the model. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号