首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 755 毫秒
1.
Dynamic (dis)assembly of biocompatible nanoparticles into 3D, packed structures would benefit drug delivery, films, and diagnostics. Dielectrophoretic (DEP) microdevices can rapidly assemble and manipulate polarizable particles within nonuniform electric fields. DEP has primarily discerned micrometer particles since nanoparticles experience smaller forces. This work examines conductivity and size DEP dependencies of previously unexplored spherical core‐shell nanoparticle (CSnp) into 3D particle assemblies. Poly‐l ‐lysine shell material was custom synthesized around a gas core to form CSnps. DEP frequencies from 1 kHz to 80 MHz at fixed 5 volts peak‐to‐peak and medium conductivities of 10?5 and 10?3 S/m were tested. DEP responses of ~220 and ~400 nm poly‐l ‐lysine CSnps were quantified via video intensity densitometry at the microdevice's quadrapole electrode center for negative DEP (nDEP) and adjacent to electrodes for positive DEP. Intensity densitometry was then translated into a relative DEP response curve. An unusual nDEP peak occurred at ~57 MHz with 25–80 times greater apparent nDEP force. All electrical circuit components were then impedance matched, which changed the observed response to weak positive DEP at low frequencies and consistently weak nDEP from ~100 kHz to 80 MHz. This impedance‐matched behavior agrees with conventional Clausius–Mossotti DEP signatures taking into account the gas core's contributions to the polarization mechanisms. This work describes a potential pitfall when conducting DEP at higher frequencies in microdevices and concurrently demonstrates nDEP behavior for a chemically and structurally distinct particle system. This work provides insight into organic shell material properties in nanostructures and strategies to facilitate dynamic nanoparticle assemblies.  相似文献   

2.
A lab-on-a-chip device is described for continuous sorting of fluorescent polystyrene microparticles utilizing direct current insulating dielectrophoresis (DC-iDEP) at lower voltages than previously reported. Particles were sorted by combining electrokinetics and dielectrophoresis in a 250 μm wide PDMS microchannel containing a rectangular insulating obstacle and four outlet channels. The DC-iDEP particle flow behaviors were investigated with 3.18, 6.20 and 10 μm fluorescent polystyrene particles which experience negative DEP forces depending on particle size, DC electric field magnitude and medium conductivity. Due to negative DEP effects, particles are deflected into different outlet streams as they pass the region of high electric field density around the obstacle. Particles suspended in dextrose added phosphate buffer saline (PBS) at conductivities ranging from 0.50 to 8.50 mS/cm at pH 7.0 were compared at 6.85 and 17.1 V/cm. Simulations of electrokinetic and dielectrophoretic forces were conducted with COMSOL Multiphysics® to predict particle pathlines. Experimental and simulation results show the effect of medium and voltage operating conditions on particle sorting. Further, smaller particles experience smaller iDEP forces and are more susceptible to competing nonlinear electrostatic effects, whereas larger particles experience greater iDEP forces and prefer channels 1 and 2. This work demonstrates that 6.20 and 10 μm particles can be independently sorted into specific outlet streams by tuning medium conductivity even at low operating voltages. This work is an essential step forward in employing DC-iDEP for multiparticle sorting in a continuous flow, multiple outlet lab-on-a-chip device.  相似文献   

3.
AC electroosmotic (ACEO) flow above the gap between coplanar electrodes is mapped by the measurement of Stokes forces on an optically trapped polystyrene colloidal particle. E2‐dependent forces on the probe particle are selected by amplitude modulation (AM) of the ACEO electric field (E) and lock‐in detection at twice the AM frequency. E2‐dependent DEP of the probe is eliminated by driving the ACEO at the probe's DEP crossover frequency. The location‐independent DEP crossover frequency is determined, in a separate experiment, as the limiting frequency of zero horizontal force as the probe is moved toward the midpoint between the electrodes. The ACEO velocity field, uncoupled from probe DEP effects, was mapped in the region 1–9 μm above a 28 μm gap between the electrodes. By use of variously sized probes, each at its DEP crossover frequency, the frequency dependence of the ACEO flow was determined at a point 3 μm above the electrode gap and 4 μm from an electrode tip. At this location the ACEO flow was maximal at ~117 kHz for a low salt solution. This optical trapping method, by eliminating DEP forces on the probe, provides unambiguous mapping of the ACEO velocity field.  相似文献   

4.
Many biomedical analysis applications require trapping and manipulating single cells and cell clusters within microfluidic devices. Dielectrophoresis (DEP) is a label-free technique that can achieve flexible cell trapping, without physical barriers, using electric field gradients created in the device by an electrode microarray. Little is known about how fluid flow forces created by the electrodes, such as thermally driven convection and electroosmosis, affect DEP-based cell capture under high conductance media conditions that simulate physiologically relevant fluids such as blood or plasma. Here, we compare theoretical trajectories of particles under the influence of negative DEP (nDEP) with observed trajectories of real particles in a high conductance buffer. We used 10-µm diameter polystyrene beads as model cells and tracked their trajectories in the DEP microfluidic chip. The theoretical nDEP trajectories were in close agreement with the observed particle behavior. This agreement indicates that the movement of the particles was highly dominated by the DEP force and that contributions from thermal- and electroosmotic-driven flows were negligible under these experimental conditions. The analysis protocol developed here offers a strategy that can be applied to future studies with different applied voltages, frequencies, conductivities, and polarization properties of the targeted particles and surrounding medium. These findings motivate further DEP device development to manipulate particle trajectories for trapping applications.  相似文献   

5.
This paper presents the development and experimental analysis of a dielectrophoresis (DEP) system, which is used for the manipulation and separation of microparticles in liquid flow. The system is composed of arrays of microelectrodes integrated to a microchannel. Novel curved microelectrodes are symmetrically placed with respect to the centre of the microchannel with a minimum gap of 40 μm. Computational fluid dynamics method is utilised to characterise the DEP field and predict the dynamics of particles. The performance of the system is assessed with microspheres of 1, 5 and 12 μm diameters. When a high‐frequency potential is applied to microelectrodes a spatially varying electric field is induced in the microchannel, which creates the DEP force. Negative‐DEP behaviour is observed with particles being repelled from the microelectrodes. The particles of different dimensions experience different DEP forces and thus settle to separate equilibrium zones across the microchannel. Experiments demonstrate the capability of the system as a field flow fraction tool for sorting microparticles according to their dimensions and dielectric properties.  相似文献   

6.
This study presents the dielectrophoretic (DEP) assembly of multi‐walled carbon nanotubes (MWCNTs) between curved microelectrodes for the purpose of trapping polystyrene microparticles within a microfluidic system. Under normal conditions, polystyrene particles exhibit negative DEP behaviour and are repelled from microelectrodes. Interestingly, the addition of MWCNTs to the system alters this situation in two ways: first, they coat the surface of particles and change their dielectric properties to exhibit positive DEP behaviour; second, the assembled MWCNTs are highly conductive and after the deposition serve as extensions to the microelectrodes. They establish an array of nanoelectrodes that initiates from the edge of microelectrodes and grow along the electric field lines. These nanoelectrodes can effectively trap the MWCNT‐coated particles, since they cover a large portion of the microchannel bottom surface and also create a much stronger electric field than the primary microelectrodes as confirmed by our numerical simulations. We will show that the presence of MWCNT significantly changes performance of the system, which is investigated by trapping sample polystyrene particles with plain, COOH and goat anti‐mouse IgG surfaces.  相似文献   

7.
Mureau N  Watts PC  Tison Y  Silva SR 《Electrophoresis》2008,29(11):2266-2271
We report the electrical characterization of single-walled carbon nanotubes (SWCNTs) trapped between two electrodes by dielectrophoresis (DEP). At high frequency, SWCNTs collected by DEP are expected to be of metallic type. Indeed current-voltage (I-V) measurements for devices made at 10 MHz show high values of conductivity and exhibit metallic behavior with linear and symmetric electrical features attributed to ohmic conduction. At low frequency, SWCNTs attracted by DEP are expected to be of semiconducting nature. Devices made at 10 kHz behave as semiconductors and demonstrate nonlinear and rectifying electrical characteristics with conductivities many orders of magnitude below the sample resulting from high-frequency immobilization of SWCNTs. Conducting atomic force microscopy (C-AFM) and current density calculation results are presented to reinforce results obtained by I-V measurements which clearly show type separation of SWCNTs after DEP experiments.  相似文献   

8.
An axial design of a capacitively coupled contactless conductivity detector was tested in combination with fused‐silica capillaries with internal diameters of 10, 15, and 25 μm, which are used for high‐efficiency electrophoretic separation. The transmission of the signal in the detection probe dependent on the specific conductivity of the solution in the capillary in the range 0–278 mS.m−1 has a complex character and a minimum appears on the curve at very low conductivities. The position of the minimum of the calibration dependence gradually shifts with decreasing frequency of the exciting signal from 1.0 to 0.25 MHz toward lower specific conductivity values. The presence of a minimum on the calibration curves is a natural property of the axial design of contactless conductivity detector, demonstrated by solution of the equivalent electrical circuit of the detection probe, and is specifically caused by the use of shielding foil. The behavior of contactless conductivity detector in the vicinity of the minimum was documented for practical separations of amino acids in solutions of 3.2 M acetic acid with addition of 0–50% v/v methanol.  相似文献   

9.
This work demonstrates the application of dielectrophoretic (DEP) control of silica nanoparticles to form tuneable optical elements within a microfluidic system. The implementation consisted of a microfluidic channel with an array of curved microelectrodes along its base. Various DEP conditions were investigated at alternating current voltage amplitudes, flow rates and frequencies from 5 to 15 V, 2 to 10 μL/min and 0 to 20 MHz, respectively. The fluid channel was filled with deionized water suspending silica particles with diameters of 230 and 450 nm. Experiments were conducted to demonstrate DEP concentration and deflection of the particles and the impact of these particles distributions on the optical transmission through the fluid channel. Both confinement and scattering of the light were observed depending on the particle dimensions and the parameters of the DEP excitation. The results of this investigation illustrate the feasibility of DEP control in an optofluidic system and represent a significant step toward the dynamic formation of electrically controlled liquid optical waveguides.  相似文献   

10.
Cheng W  Li SZ  Zeng Q  Yu XL  Wang Y  Chan HL  Liu W  Guo SS  Zhao XZ 《Electrophoresis》2011,32(23):3371-3377
We present a feasible dielectrophoresis (DEP) approach for rapid patterning of microparticles on a reusable double-layer electrode substrate in microfluidics. Simulation analysis demonstrated that the DEP force was dramatically enhanced by the induced electric field on top interdigitated electrodes. By adjusting electric field intensity through the bottom electrodes on thin glass substrate (100 μm), polystyrene particles (10 μm) were effectively patterned by top electrodes within several seconds (<5 s). The particle average velocity can reach a maximum value of about 20.0±3.0 μm/s at 1 MHz with the strongest DEP force of 1.68 pN. This approach implements integration of functional electrodes into one substrate and avoids direct electrical connection to biological objects, providing a potential lab-on-chip system for biological applications.  相似文献   

11.
The spatial and temporal control of biological species is essential in complex microfluidic biosystems. In addition, if the biological species is a cell, microfluidic handling must ensure that the cell's metabolic viability is maintained. The use of DEP for cell manipulation in microfluidics has many advantages because it is remote and fast, and the voltages required for cell trapping scale well with miniaturization. In this paper, the conditions for bacterial cell (Escherichia coli) trapping using a quadrupole electrode configuration in a PDMS microfluidic channel were developed both for stagnant and for in‐flow fluidic situations. The effect of the electrical conductivity of the fluid, the applied electric field and frequency, and the fluid‐flow velocity were studied. A dynamic exchange between captured and free‐flowing cells during DEP trapping was demonstrated. The metabolic activity of trapped cells was confirmed by using E. coli cells genetically engineered to express green fluorescent protein under the control of an inducible promoter. Noninduced cells trapped by negative DEP and positive DEP were able to express green fluorescent protein minutes after the inducer was inserted in the microchannel system immediately after DEP trapping. Longer times of trapping prior to exposure to the inducer indicated first a degradation of the cell metabolic activity and finally cell death.  相似文献   

12.
Jen CP  Weng CH  Huang CT 《Electrophoresis》2011,32(18):2428-2435
The focusing of biological and synthetic particles in microfluidic devices is a prerequisite for the construction of microstructured materials, as well as for medical applications. In the present study, a microdevice that can effectively focus particles in three dimensions using a combination of insulator-based and metal-electrode dielectrophoresis (DEP) has been designed and fabricated. The DEP force is employed to confine the particles using a negative DEP response. Four insulating microstructures, which form an X-pattern in the microchannel, were employed to distort the electric field between the insulators in a conducting solution, thereby generating regions with a high electric-field gradient. Two strips of microelectrodes on the top and bottom surfaces were placed in the middle of the microchannel and connected to an electric pole. Two sets of dual-planar electrodes connected to the opposite pole were placed at the sides of the microchannel at the top and bottom surfaces. The results of a transient simulation of tracks of polystyrene particles, which was performed using the commercial software package CFD-ACE? (ESI Group, France), demonstrate that the three-dimensional focusing of particles was achieved when the applied voltage was larger than 35?V at a frequency of 1 MHz. Furthermore, the focusing performance increased with the increased strength of the applied electric field and decreased inlet flow rate. Experiments on particle focusing, employing polystyrene particles 10 μm in diameter, were conducted to demonstrate the feasibility of the proposed design; the results agree with the trend predicted by numerical simulations.  相似文献   

13.
Gagnon Z  Chang HC 《Electrophoresis》2005,26(19):3725-3737
Tailor-designed alternating current electroosmotic (AC-EO) stagnation flows are used to convect bioparticles globally from a bulk solution to localized dielectrophoretic (DEP) traps that are aligned at the flow stagnation points. The multiscale trap, with a typical trapping time of seconds for a dilute 70 microL volume of 10(3) particles per cc sample, is several orders of magnitude faster than conventional DEP traps and earlier AC-EO traps with parallel, castellated, or finger electrodes. A novel serpentine wire capable of sustaining a high voltage, up to 2500 V(RMS), without causing excessive heat dissipation or Faradaic reaction in strong electrolytes is fabricated to produce the strong AC-EO flow with two separated stagnation lines, one aligned with the field minimum and one with the field maximum. The continuous wire design allows a large applied voltage without inducing Faradaic electrode reactions. Particles are trapped within seconds at one of the traps depending on whether they suffer negative or positive DEP. The particles can also be rapidly released from their respective traps by varying the frequency of the applied AC field below particle-distinct cross-over frequencies. Zwitterion addition to the buffer allows further geometric and frequency alignments of the AC-EO and DEP motions. The same device hence allows fast trapping, detection, sorting, and characterization on a sample with realistic conductivity, volume, and bacteria count.  相似文献   

14.
《先进技术聚合物》2018,29(1):612-622
Considering the poor dispersion and inert ionic conduction ability of carbon nanotubes (CNTs), functionalization of CNTs is a critical issue for their application in polymer electrolyte membranes. Herein, CNTs were functionalized by the polyelectrolyte, chitosan (CS), via a facile noncovalent surface‐deposition method. The obtained CS‐coated CNTs (CS@CNTs) were then incorporated into the CS matrix and fabricated composite membranes. The CS coating can enhance the compatibility between CNTs and the matrix, thus ensuring the homogenous dispersion of CS@CNTs and effectively improved the mechanical properties of the composites. Moreover, the CS coating can make CS@CNTs act as an additional proton‐conducting pathway through the membranes. The CS/CS@CNTs‐1 composite shows the highest proton conductivity of 3.46 × 10−2 S cm−1 at 80°C, which is about 1.5‐fold of the conductivity of pure CS membrane. Consequently, the single cell equipped with CS/CS@CNTs‐1 membrane exhibits a peak power density of 47.5 mW cm−2, which is higher than that of pure CS (36.1 mW cm−2).  相似文献   

15.
This paper presents the development and experimental analysis of a curved microelectrode platform for the DEP deformation of breast cancer cells (MDA‐MB‐231). The platform is composed of arrays of curved DEP microelectrodes which are patterned onto a glass slide and samples containing MDA‐MB‐231 cells are pipetted onto the platform's surface. Finite element method is utilised to characterise the electric field gradient and DEP field. The performance of the system is assessed with MDA‐MB‐231 cells in a low conductivity 1% DMEM suspending medium. We applied sinusoidal wave AC potential at peak to peak voltages of 2, 5, and 10 Vpp at both 10 kHz and 50 MHz. We observed cell blebbing and cell shrinkage and analyzed the percentage of shrinkage of the cells. The experiments demonstrated higher percentage of cell shrinkage when cells are exposed to higher frequency and peak to peak voltage electric field.  相似文献   

16.
This work explores dielectrophoresis (DEP)‐active hydrophoresis in sorting particles and cells. The device consists of prefocusing region and sorting region with great potential to be integrated into advanced lab‐on‐a‐chip bioanalysis devices. Particles or cells can be focused in the prefocusing region and then sorted in the sorting region. The DEP‐active hydrophoretic sorting is not only based on size but also on dielectric properties of the particles or cells of interest without any labelling. A mixture of 3 and 10 μm particles were sorted and collected from corresponding outlets with high separation efficiency. According to the different dielectric properties of viable and nonviable Chinese Hamster Ovary (CHO) cells at the medium conductivity of 0.03 S/m, the viable CHO cells were focused well and sorted from cell sample with a high purity.  相似文献   

17.
DNA origami is a widely used method for fabrication of custom‐shaped nanostructures. However, to utilize such structures, one needs to controllably position them on nanoscale. Here we demonstrate how different types of 3D scaffolded multilayer origamis can be accurately anchored to lithographically fabricated nanoelectrodes on a silicon dioxide substrate by DEP. Straight brick‐like origami structures, constructed both in square (SQL) and honeycomb lattices, as well as curved “C”‐shaped and angular “L”‐shaped origamis were trapped with nanoscale precision and single‐structure accuracy. We show that the positioning and immobilization of all these structures can be realized with or without thiol‐linkers. In general, structural deformations of the origami during the DEP trapping are highly dependent on the shape and the construction of the structure. The SQL brick turned out to be the most robust structure under the high DEP forces, and accordingly, its single‐structure trapping yield was also highest. In addition, the electrical conductivity of single immobilized plain brick‐like structures was characterized. The electrical measurements revealed that the conductivity is negligible (insulating behavior). However, we observed that the trapping process of the SQL brick equipped with thiol‐linkers tended to induce an etched “nanocanyon” in the silicon dioxide substrate. The nanocanyon was formed exactly between the electrodes, that is, at the location of the DEP‐trapped origami. The results show that the demonstrated DEP‐trapping technique can be readily exploited in assembling and arranging complex multilayered origami geometries. In addition, DNA origamis could be utilized in DEP‐assisted deformation of the substrates onto which they are attached.  相似文献   

18.
Direct cold vapor and hydride generation procedures for As, Bi, Ge, Hg and Se(IV) from aqueous slurry of coal fly ash samples have been developed by using a batch mode generation system. Ir-treated graphite tubes have been used as a preconcentration and atomization medium of the vapors generated. A Plackett–Burman experimental design has been used as a strategy for evaluation of the effects of several parameters affecting the vapor generation efficiency from solid particles, vapor trapping and atomization efficiency from Ir-treated graphite tubes. The effects of parameters such as hydrochloric acid and sodium tetrahydroborate, argon flow rate, trapping and atomization temperatures, trapping time, acid solution volume and mean particle size have been investigated. The significant parameters obtained (trapping and atomization temperatures for As and Ge; trapping temperature and trapping time for Bi; argon flow rate and atomization temperature for Se) have been optimized by 22+star central composite design. For Hg, the trapping temperature has been also significant. Optimum values of the parameters have been selected for the development of direct cold vapor/hydride generation methods from slurry particles. The accuracy of methods have been verified by using NIST-1633a coal fly ash certified reference material. Absolute detection limits of 11.5, 48.0, 600, 55.0 and 11.0 ng l−1 for As, Bi, Ge, Hg and Se have been achieved, respectively. A particle size less than 50 μm has shown to be adequate to obtain total cold vapor/hydride generation of metals content in the aqueous slurry particles.  相似文献   

19.
Recently, the frequency of combining MXene, which has unique properties such as metal-level conductivity and large specific surface area, with silicon to achieve excellent electrochemical performance has increased considerably. There is no doubt that the introduction of MXene can improve the conductivity of silicon and the cycling stability of electrodes after elaborate structure design. However, most exhaustive contacts can only improve the electrode conductivity on the plane. Herein, a MXene@Si/CNTs (HIEN-MSC) composite with hierarchical interpenetrating electroconductive networks has been synthesized by electrostatic self-assembly. In this process, the CNTs are first combined with silicon nanoparticles and then assembled with MXene nanosheets. Inserting CNTs into silicon nanoparticles can not only reduce the latter‘s agglomeration, but also immobilizes them on the three-dimensional conductive framework composed of CNTs and MXene nanosheets. Therefore, the HIEN-MSC electrode shows superior rate performance (high reversible capacity of 280 mA h−1 even tested at 10 A g−1), cycling stability (stable reversible capacity of 547 mA h g−1 after 200 cycles at 1 A g−1) and applicability (a high reversible capacity of 101 mA h g−1 after 50 cycles when assembled with NCM622 into a full cell). These results may provide new insights for other electrodes with excellent rate performance and long-cycle stability.  相似文献   

20.
Electrothermal micropumps (ETμPs) use local heating to create conductivity and permittivity gradients in the pump medium. In the presence of such gradients, an external AC electric field influences smeared spatial charges in the bulk of the medium. When there is also a symmetry break, the field‐charge interaction results in an effective volumetric force resulting in medium pumping. The advantages of the ETμP principle are the absence of moving parts, the opportunity to passivate all the pump structures, homogeneous pump‐channel cross‐sections, as well as force plateaus in broad frequency ranges. The ETμPs consisted of a DC‐heating element and AC field electrodes arranged in a 1000 μm × 250 μm × 60 μm (length × width × height) channel. They were processed as platinum structures on glass carriers. An equivalent‐circuit diagram allowed us to model the frequency‐dependent pumping velocities of passivated and nonpassivated ETμPs, which were measured at medium conductivities up to 1.0 S/m in the 300 kHz to 52 MHz frequency range. The temperature distributions within the pumps were controlled by thermochromic beads. Under resonance conditions, an additional inductance induced a tenfold pump‐velocity increase to more than 50 μm/s at driving voltages of 5 Vrms. A further miniaturization of the pumps is viewed as quite feasible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号