首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为了解决非线性扩张状态观测器(NLESO)对大幅度扰动估计能力有限的问题,本文提出一种线性/非线性切换扩张状态观测器.首先分析了非线性扩张状态观测器对大幅度扰动估计能力有限的原因,然后提出在NLESO的非线性区间引入一段线性扩张状态观测器(LESO)弥补NLESO的缺陷,其次从理论上证明了提出的线性/非线性切换扩张状态观测器的收敛性.最后,通过数值仿真验证了提出的线性/非线性切换扩张状态观测器的可行性.  相似文献   

2.
针对一类不确定非仿射严反馈非线性系统,提出一种引入动态逆的线性自抗扰控制器设计方法.首先,利用微分同胚映射将严反馈非线性系统变换为积分串联型系统,然后针对积分串联型系统设计线性自抗扰控制器.提出的线性自抗扰控制器将闭环系统划分为3个时间尺度,其中线性扩张状态观测器位于最快的时间尺度上,用来估计系统的状态和总和扰动,动态逆位于次快的时间尺度上用以求解非仿射情况下的控制律,系统动态位于最慢的时间尺度上.利用奇异摄动理论分析了闭环系统的稳定性和性能.提出的自抗扰控制设计方法同样适用于控制增益不确定的仿射非线性系统.仿真和实验结果验证了提出的线性自抗扰控制器的可行性.  相似文献   

3.
本文针对全方位移动机器人轨迹追踪中的摩擦补偿问题,提出了一种改进的非线性自抗扰控制器.首先建立了含有经典静态摩擦模型的全方位移动机器人动力学模型.其次,基于该模型设计非线性控制器和线性扩张状态观测器并给出了系统的稳定性分析.通过将模型已知项加入线性扩张状态观测器中得到摩擦力的估计值,并将估计值用于非线性控制器中摩擦补偿部分.为减小摩擦力对机器人低速运动轨迹追踪控制的影响,非线性控制器采用变增益控制器进行轨迹追踪控制.最后通过仿真结果验证本文提出控制器的有效性.  相似文献   

4.
Output regulation theory aims to design a controller for achieving reference tracking and disturbance rejection while maintaining system stability. Different from the stabilization problem about an equilibrium point, the output regulation problem is capable of characterizing more complicated steady‐state trajectories induced by reference and/or disturbance. Many efforts have been made to reveal how a steady‐state trajectory can be characterized, estimated, and hence compensated by a controller such that output regulation can be asymptotically achieved. When the steady‐state trajectory is approximately treated as a constant “quantity”, the standard output regulation implies an approximate version within which output regulation is practically achieved. It is revealed in this paper that such an approximate version of output regulation includes the later developed active disturbance rejection control (ADRC) method as a special case.  相似文献   

5.
This paper addresses a robust control approach for a class of input–output linearizable nonlinear systems with uncertainties and modeling errors considered as unknown inputs. As known, the exact feedback linearization method can be applied to control input–output linearizable nonlinear systems, if all the states are available and modeling errors are negligible. The mentioned two prerequisites denote important problems in the field of classical nonlinear control. The solution approach developed in this contribution is using disturbance rejection by applying feedback of the uncertainties and modeling errors estimated by a specific high‐gain disturbance observer as unknown inputs. At the same time, the nonmeasured states can be calculated from the estimation of the transformed system states. The feasibility and conditions for the application of the approach on mechanical systems are discussed. A nonlinear multi‐input multi‐output mechanical system is taken as a simulation example to illustrate the application. The results show the robustness of the control design and plausible estimations of full‐rank disturbances.Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
    
This article investigates the barrier lyapunov function-based adaptive robust control scheme for nonaffine nonlinear systems with unknown system dynamics. First, the nonaffine system is converted into affine system via a combination of first-order filter and coordinate transformation, then a high-gain observer is utilized to reconstruct the immeasurable states of the derived affine system. Second, a robust integral of the sign of the error (RISE) is incorporated into the control design to reject the unknown dynamics. Third, a barrier lyapunov function based design method is used to ensure that the input vector to the parameter estimation remain within a predefined region. Then, an adaptive robust control scheme with only one adaptive parameter by using the upper bound estimation is developed. Finally, numerical simulations validate the efficacy of the developed control scheme.  相似文献   

7.
    
The paper proposes a novel control design for nonlinear systems with multiple uncertainties and nonlinear measurement. The output linearization is utilized to handle the nonlinearities in system dynamics and measurement. Firstly, the integrator chain for nonlinear systems with multiple uncertainties is analyzed. Based on the fundamental integrator chain form, the equivalent total effect of multiple uncertainties is summarized as total disturbance. By timely estimating and compensating for the total disturbance, an active disturbance rejection control design to handle both multiple uncertainties and nonlinear measurement is proposed. Moreover, the transient performance of the corresponding closed‐loop system is rigorously studied, which theoretically reveals the high consistence of the tracking performance despite various multiple uncertainties.  相似文献   

8.
飞行制导控制一体化设计方法综述   总被引:9,自引:1,他引:9       下载免费PDF全文
从系统模型和控制设计方法两个方面综述了飞行器制导控制一体化设计方法的研究现状. 论述了制导控制一体化设计中的关键问题, 即系统具有较高的阶数和系统存在大量不确定性. 提出了基于自抗扰控制的三维制导控制一体化设计方法. 该控制方法具有简明的线性结构, 并且可以对飞行控制系统中的非线性时变不确定性进行实时估计和补偿. 仿真结果表明该方法可以对付大范围的不确定性, 具有很好的鲁棒性.  相似文献   

9.
In this paper, the practical mean-square convergence of active disturbance rejection control for a class of uncertain stochastic nonlinear systems modelled by the Itô-type stochastic differential equations with vast stochastic uncertainties is developed. We first design an extended state observer (ESO) to estimate both the unmeasured states and the stochastic total disturbance which includes unknown internal system dynamics, external stochastic disturbance without known statistical characteristics, unknown stochastic inverse dynamics, and uncertainty caused by the deviation of control parameter from its nominal value. The stochastic total disturbance is then cancelled (compensated) in the feedback loop. An ESO-based output-feedback control is finally designed analogously as for the system without uncertainties. The practical mean-square reference tracking and practical mean-square stability of the resulting closed-loop system are achieved. The numerical experiments are carried out to illustrate the effectiveness of the proposed approach.  相似文献   

10.
航天机电伺服系统作用是接收火箭控制系统的指令信号并带动空气舵或者喷管跟随指令信号运动,其在应用上的主要特点是负载特性变化大.传统的PID算法在航天机电伺服系统上的应用已经比较成熟,但是在空气舵或者喷管本身负载特性发生改变时,传统的PID算法的控制效果会明显下降.因此,本文建立了航天机电伺服系统柔性运动模型,并提出了将自...  相似文献   

11.
    
An impedance control scheme is proposed for a Stewart-structure-based wheel-legged robotic system to strengthen the dynamic attitude adjustment stability in wheel motion. The wheel-leg, which is driven by electrical cylinders in the Stewart structure, is analyzed in kinematics and dynamics. The rotation in the axial direction of every electric cylinder is calculated to improve the accuracy of the kinematic model. To fulfill the impedance demands, a passive structure with 6 degrees of freedom (DOF) is modeled. The mass of the mechanism has a coupling effect on the impedance model for each DOF, which is a nonlinear function. As motion decoupling in the workspace has been completed for the Stewart structure, an impedance control strategy with inner-loop position tracking is employed. An extended state observer (ESO) is designed to estimate the disturbances arising from the nonlinear coupling effects. Based on the ESO observation outputs, an active disturbance rejection control that explicitly handles the workspace limit is designed with guaranteed practical stability. By reducing force interaction and body vibration, the wheel-legged robotic system keeps wheel motion stability on uneven roads. Multiple comparative experimental results are presented to validate the stability and effectiveness of the proposed method.  相似文献   

12.
针对存在不确定执行器故障和未知不匹配干扰的可反馈线性化非线性系统,提出一种鲁棒自适应容错控制策略.首先分别给出系统输入和扰动关于系统输出的相对阶,针对两种相对阶之间的不同关系设计鲁棒控制器,抑制干扰对系统输出的影响;然后针对各故障情况分别设计容错控制器;最后将各控制器进行融合得到一个综合故障补偿控制器,从而有效解决故障模式、类型、大小、时间和外界干扰等多重不确定性,保证闭环系统稳定和渐近输出跟踪性能.仿真结果验证了所设计控制方案的可行性与有效性.  相似文献   

13.
为实现导弹对目标的高精度拦截, 本文提出了基于加权齐次函数的非线性自抗扰拦截制导设计方法. 首先, 提出了基于加权齐次函数的非线性扩张状态观测器在线估计视线角速率和由目标加速度等内外不确定性因素构成的总扰动. 其次, 设计了基于非线性扩张状态观测器的非线性自抗扰三维制导律对总扰动进行补偿, 该制导律克服了高阶非线性项与强耦合项等不利因素的影响, 提高了拦截制导精度. 本文通过分析误差系统的动力学行为证明了闭环制导系统的稳定性和收敛性. 本文提出的方法在拦截精度等方面优于已有的基于线性扩张状态观测器和基于fal函数的扩张状态观测器的自抗扰制导方法. 仿真结果验证了本文所提出方法的有效性和优越性.  相似文献   

14.
    
A direct adaptive control framework for a class of nonlinear matrix second‐order systems with time‐varying and sign‐indefinite damping and stiffness operators is developed. The proposed framework guarantees global asymptotic stability of the closed‐loop system states associated with the plant dynamics without requiring any knowledge of the system nonlinearities other than the assumption that they are continuous and bounded. The proposed adaptive control approach is used to design adaptive controllers for suppressing thermoacoustic oscillations in combustion chambers.  相似文献   

15.
高阳  吴文海  高丽 《控制与决策》2020,35(2):483-491
针对一类具有内部动态和外部扰动未知的SISO高阶非线性系统,提出一种通用的线性自抗扰控制方案.该方案基于单参数调节的高增益观测器思想,分别设计线性跟踪微分器、线性扩张状态观测器和线性状态误差反馈控制律.利用Lagrange中值定理和Cauchy-Schwarz不等式将系统总扰动的微分值转化为关于系统估计和跟踪误差的函数,可以解决因系统控制增益未知所导致的控制量微分值难以预先确定的问题.在此基础上,基于Lyapunov稳定性定理证明闭环系统误差信号有界,并进一步分析得到系统估计和跟踪误差与控制器参数的定量关系,即都可以随观测器增益的增大而达到无限小.仿真比较结果验证了所提出方案的有效性,与韩式自抗扰控制方案相比,该方案结构简单,调节参数少,易于工程实现.  相似文献   

16.
    
A novel anti‐windup design method is provided for a class of uncertain nonlinear systems subject to actuator saturation and external disturbance. The controller considered incorporates both an active disturbance rejection controller as well as an anti‐windup compensator. The dynamical uncertainties and external disturbance are treated as an extended state of the plant, and then estimate it using an extended state observer and compensate for it in the control action, in real time. The anti‐windup compensator produces a signal based on the difference between the controller output and the saturated actuator output, and then augment the signal to the control to deal with the windup phenomenon caused by actuator saturation. We first show that, with the application of the proposed controller, the considered nonlinear system is asymptotically stable in a region including the origin. Then, in the case that the controller in linear form, we establish a linear matrix inequality‐based framework to compute the extended state observer gain and the anti‐windup compensation gain that maximize the estimate of the domain of attraction of the resulting closed‐loop system. The effectiveness of the proposed method is illustrated by a numerical example. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
    
ABSTRACT

In this paper, both linear extended state observer (ESO) and nonlinear ESO with homogeneous weighted functions are proposed for a class of multi-input multi-output (MIMO) nonlinear systems composed of coupled subsystems with large stochastic uncertainties. The stochastic uncertainties in each subsystem including internal coupled unmodelled dynamics and external stochastic disturbance without known statistical characteristics are lumped together as the stochastic total disturbance (extended state) of each subsystem. The linear ESO and nonlinear ESO are designed separately for real-time estimation of not only the unmeasured state but also the stochastic total disturbance of each subsystem. The practical mean square convergence of these two classes of ESOs are developed. Some numerical simulations are presented to demonstrate the effectiveness of the ESOs with the advantages of smaller peaking values and more accurate estimation by the nonlinear ESO.  相似文献   

18.
本文讨论边界具有内部不确定和外部扰动的非线性sine-Gordon方程的镇定问题. 为处理sine-Gordon方程中的非线性项, 文章给出一个新的总扰动观测器在线估计未知扰动, 并通过自抗扰控制方法, 设计一个控制器使得在反馈控制中实时补偿(消除)总扰动. 闭环系统被证明适定的并且受控系统是指数稳定而扰动观测器是有界的. 数值模拟说明提出方法的有效性.  相似文献   

19.
在分析舰船航行中所受干扰特性的基础上,针对目前舵鳍联合控制中存在的问题,以虚拟控制力作为中间变量,设计了主从结构的舵鳍联合控制策略.主控制器采用非线性干扰观测器对环境扰动和模型不确定性进行估计,在此基础上以虚拟控制力作为控制量采用自抗扰结构,对船舶三自由度运动进行联合控制.同时,在主控制器设计中包含了舵/鳍伺服系统的实际约束,保证了从控制器解的可行性.基于遗传算法设计了数值反演从控制器,求取最终的控制量.通过船模试验和仿真对所设计的控制器进行了验证,试验和仿真结果表明所设计的两步主从控制策略具有较好的控制效果.  相似文献   

20.
    
This paper concerns about the global disturbance rejection problem for uncertain nonlinear lower triangular systems with integral input‐to‐state stable (iISS) inverse dynamics and an uncertain exosystem. The main challenges addressed in this paper include uncertain exosystem, unknown control direction, iISS inverse dynamics, and complex structure of lower triangular systems. Because of the presence of both uncertain exosystem and unknown control direction, simply combining the existing techniques for each of these challenges cannot solve the proposed problem. In fact, to handle the current case, appropriate new update laws for the estimators of the uncertain parameters are required, such that the estimators can be successfully integrated with the internal model principle. Furthermore, the changing supply function technique for iISS systems is utilized to deal with the iISS inverse dynamics. With the proposed controller, the closed‐loop system is globally asymptotically stable, and the disturbance is globally rejected. Two simulation examples are finally presented to show the effectiveness of the proposed control scheme and the practical relevance of our work. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号

京公网安备 11010802026262号