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Abstract

The author investigates the hyper order of solutions of the higher order linear equation, and
improves the results of M. Ozawa[15], G. Gundersen[6] and J. K. Langley[12].
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§1. Introduction and Results

For second order linear differential equation

f ′′ + e−zf ′ +Q(z)f = 0, (1.1)

where Q(z) is an entire function of finite order, it is well known that each solution f of

Equation (1.1) is an entire function, and that if f1 and f2 are any two linearly independent

solutions of (1.1), then at least one of f1, f2 must have infinite order[8, pp.167–168]. Hence,

“most” solutions of (1.1) will have infinite order. But Equation (1.1) with Q(z) = −(1+e−z)

possesses a solution f = ez of finite order.

Thus a natural question is: what condition on Q(z) will guarantee that every solution

f ̸≡ 0 of (1.1) has infinite order? Many authors, M. Frei, M. Ozawa, G. Gundersen and J.

K. Langley have studied the problem.

M. Frei proved the following result in [4].

Theorem 1.1.[4] If the equation

f ′′ + e−zf ′ + Cf = 0, (1.2)

where C( ̸= 0) is a complex constant, possesses a solution f ̸≡ 0 of finite order, then C = −k2,
where k is a positive integer. Conversely for each positive integer k Equation (1.2) with

C = −k2 possesses a solution f which is a polynomial in ez of degree k.
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M. Ozawa[15], I. Amemiya and M. Ozawa[1], and G. Gundersen[5] studied the case when

Q(z) is a particular polynomial. J. K. Langley proved the following result for the case when

Q(z) is a general polynomial in [12].

Theorem 1.2.[12] Let Q(z) be a non-constant polynomial. Then all nontrivial solutions

of

f ′′ +Ae−zf ′ +Q(z)f = 0 (1.3)

have infinite order, for any nonzero constant A.

For the case that Q(z) is a transcendental entire function, G. Gundersen proved the

following theorem.

Theorem 1.3.[5] If Q(z) is a transcendental entire function with order σ(Q) ̸= 1, then

every solution f ̸≡ 0 of (1.1) has infinite order.

Here σ(f) denotes the order of growth of meromorphic function f(z). We assume that

the reader is familiar with the fundamental results and the standard notations of the Nevan-

linna’s value distribution theory of meromorphic functions (e.g. see [9, 13]). In addition, we

will use the notation σ2(f) to denote the hyper order of f(z) (see [17]), which is defined to

be

σ2(f) = lim
r→∞

log log T (r, f)

log r
.

The example in front shows that when σ(Q) = 1, Equation (1.1) can have a solution of

finite order. Theorems 1.2, 1.3 show that if Q is a non-constant entire function and σ(Q) ̸= 1,

then every solution of (1.1) has infinite order. What condition on Q(z) when σ(Q) = 1 will

guarantee every solution f ̸≡ 0 of (1.1) has infinite order? The author investigates the

problem and obtains the following results in [3].

Theorem 1.4.[3] Let a, b be nonzero complex numbers and a ̸= b, Q(z) be a non-constant

polynomial or Q(z) = h(z)ebz where h(z) is nonzero polynomial. Then every solution f( ̸≡ 0)

of the equation

f ′′ + eazf ′ +Q(z)f = 0 (1.4)

has infinite order and σ2(f) = 1.

In this paper, we concern with the higher order differential equations and obtain the

following results that greatly extend and perfect results of M. Frei, M. Ozawa, G. Gundersen,

J. K. Langley and the author.

Theorem 1.5. Suppose that aj (j = 0, · · · , k − 1) are complex numbers. There exist as
and al such that s < l, as = dse

iφ, al = −dleiφ, ds > 0, dl > 0, and for j ̸= s, l, aj =

dje
iφ (dj ≥ 0) or aj = −djeiφ, max{dj |j ̸= s, l} = d < min{ds, dl}. If Hj = hje

ajz,

where hj are polynomials, hshl ̸≡ 0, then every transcendental solution f of the differential

equation

f (k) +Hk−1f
(k−1) + · · ·Hlf

(l) + · · ·+Hsf
(s) + · · ·+H0f = 0 (1.5)

satisfies σ(f) = ∞ and σ2(f) = 1.

Theorem 1.6. Suppose that Hj (j = 0, · · · , k − 1) satisfy additional hypotheses of The-

orem 1.5, gj (j = 0, · · · , k− 1) are polynomials. Then every transcendental solution f of the

differential equation

f (k)+(Hk−1+gk−1)f
(k−1)+· · · (Hl+gl)f

(l)+· · ·+(Hs+gs)f
(s)+· · ·+(H0+g0)f = 0 (1.6)
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satisfies σ(f) = ∞ and σ2(f) = 1.

Corollary 1.1. Suppose that hj(z) (j = 0, 1, 2) are nonzero polynomials, gj (j = 0, 1, 2)

are polynomials. Then all nontrivial solutions of the following differential equations

f ′′′ + h2e
zf ′′ + h1e

−zf ′ + h0f = 0, (1.7)

f ′′′ + (h2e
z + g2)f

′′ + (h1e
−z + g1)f

′ + h0f = 0, (1.8)

f ′′′ + h2f
′′ + h1e

zf ′ + h0e
−zf = 0, (1.9)

f ′′′ + h2f
′′ + (h1e

z + g1)f
′ + (h0e

−z + g0)f = 0, (1.10)

f ′′′ + h2e
zf ′′ + h1f

′ + h0e
−zf = 0, (1.11)

f ′′′ + (h2e
z + g2)f

′′ + h1f
′ + (h0e

−z + g0)f = 0 (1.12)

have infinite order and σ2(f) = 1.

§2. Lemmas for the Proofs of Theorems

Lemma 2.1.[2] Let g(z) be an entire function of infinite order with the hyper order

σ2(g) = σ, and let ν(r) be the central index of g. Then

lim
r→∞

log log ν(r)

log r
= σ.

Lemma 2.2. Let f(z) be an entire function with σ(f) = ∞ and σ2(f) = α < +∞, let

set E ⊂ [1,∞) have finite logarithmic measure. Then there exists {zk = rke
iθk} such that

|f(zk)| =M(rk, f), θk ∈ [0, 2π), lim
k→∞

θk = θ0 ∈ [0, 2π), rk /∈ E, rk → ∞ and for any given

ε > 0, for sufficiently large rk, we have

lim
k→∞

log ν(rk)

log rk
= ∞, (2.1)

exp{rα−ε
k } < ν(rk) < exp{rα+ε

k }, (2.2)

where ν(r) is the central index of f(z).

Proof. By Lemma 2.1 and σ2(f) = α, we have

lim
r→∞

log log ν(r)

log r
= σ2(f) = α <∞.

There is a sequence {r′k} (r′k → ∞) satisfying

lim
r′k→∞

log log ν(r′k)

log r′k
= α.

Set the logarithmic measure of E, lmE = δ <∞. Then there is a point rk ∈ [r′k, (δ+1)r′k]\E,

so that since
log log ν(rk)

log rk
≥ log log ν(r′k)

log[(δ + 1)r′k]
=

log log ν(r′k)

log r′k
[
1 + log(δ+1)

log r′k

] ,
we have

lim
rk→∞

log log ν(rk)

log rk
= α.

Therefore, (2.2) holds. And (2.1) obviously holds. Now we take zk = rke
iθk , θk ∈ [0, 2π),

such that |f(zk)| = M(rk, f). There is a subset {θkj} of {θk}, such that lim
j→∞

θkj = θ0 ∈

[0, 2π). Thus {zkj = rkje
iθkj } satisfies our assertion.
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Lemma 2.3. Suppose that H = heaz, where h is a nonzero polynomial, a = deiφ, φ ∈
[0, 2π), d > 0 is a constant, z = reiθ, θ ∈ [0, 2π). Then for any given ε (> 0), we have as

r sufficiently large,

(i) if cos(φ+ θ) > 0, then

exp{(1− ε)dr cos(φ+ θ)} ≤ |H(reiθ)| ≤ exp{(1 + ε)dr cos(φ+ θ)}; (2.3)

(ii) if cos(φ+ θ) < 0, then

exp{(1 + ε)dr cos(φ+ θ)} ≤ |H(reiθ)| ≤ exp{(1− ε)dr cos(φ+ θ)}; (2.4)

(iii) if cos(φ+ θ) = 0, then

|H(reiθ)| ≤ rM , (2.5)

where M (> 0) is a constant.

Proof. Since |eaz| = exp{dr cos(φ+ θ)}, we can easily prove Lemma 2.3.

By using the similar proof as that of Lemma 4 of [6], we can obtain the following Lemma

2.4.

Lemma 2.4. Let f(z) be an entire function and suppose that |f (k)(z)| is unbounded on

some ray arg z = θ. Then there exists an infinite sequence of points zn = rne
iθ (n = 1, 2, · · · ),

where rn → ∞, such that f (k)(zn) → ∞ and∣∣∣ f (j)(zn)
f (k)(zn)

∣∣∣ ≤ |zn|k−j(1 + o(1)), j = 0, · · · , k − 1. (2.6)

Lemma 2.5.[7] Let f be a transcendental meromorphic function with σ(f) = σ <∞,H =

{(k1, j1), (k2, j2), · · · , (kq, jq)} be a finite set of distinct pairs of integers which satisfy ki >

ji ≥ 0 for i = 1, · · · , q. And let ε > 0 be a given constant. Then there exists a set E ⊂
[0, 2π) which has linear measure zero, such that if ψ ∈ [0, 2π)\E, then there is a constant

R0 = R0(ψ) > 1 such that for all z satisfying arg z = ψ and |z| ≥ R0 and for all (k, j) ∈ H,

we have ∣∣∣f (k)(z)
f (j)(z)

∣∣∣ ≤ |z|(k−j)(σ−1+ε). (2.7)

Lemma 2.6.[14, p.214] Let f(z) be analytic in the region D = {z|α < arg z < β, r0 <

|z| < ∞}, and continuous on D = D ∪ C (C is the boundary of D). If for any given small

ε > 0, there exists R(ε) > 0 such that for |z| ≥ R(ε), z ∈ D, we have |f(z)| < exp{ε|z|
π

β−α },
and for z ∈ C, we have |f(z)| ≤ M(M > 0 is a constant), then |f(z)| ≤ M holds for all

z ∈ D.

Lemma 2.7. Let f(z) be an entire function with σ(f) = σ < ∞. Suppose that there

exists a set E ⊂ [0, 2π) which has linear measure zero, such that for any ray arg z = θ0 ∈
[0, 2π)\E, |f(reiθ0)| ≤ Mrk (M = M(θ0) > 0 is a constant, k (> 0) is a constant indepen-

dent of θ0). Then f(z) is a polynomial with deg f ≤ k.

Proof. Since E has linear measure zero, we can choose points θj ∈ [0, 2π)\E (j =

1, · · · , n, n+ 1) such that

0 ≤ θ1 < θ2 < · · · < θn < 2π, θn+1 = θ1 + 2π,

max{θj+1 − θj |1 ≤ j ≤ n} < π

σ + 1
.
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For any given ε > 0, by σ(f) = σ, there is an R(ε) > 0, such that∣∣∣f(z)
zk

∣∣∣ ≤ exp{ε|z|σ+1}.

In the sectors

Hj = {z|θj ≤ arg z ≤ θj+1, |z| ≥ R}, j = 1, · · · , n,∣∣∣f(z)
zk

∣∣∣ ≤ exp{ε|z|
π

θj+1−θj }

hold, and on the rays arg z = θj , θj+1, | f(z)zk | ≤M holds. By Lemma 2.6, | f(z)
zk | ≤M holds in

each Hj . Hence |f(z)| ≤ M |z|k holds in whole plane. Therefore f(z) is a polynomial with

deg f ≤ k.

Lemma 2.8.[7] Let f be a transcendental meromorphic function, and let α > 1 be a

given constant. Then there exist a set E ⊂ (1,+∞) which has a finite logarithmic measure

and a constant B > 0 depending only on α and (m,n) (m,n ∈ {0, · · · , k} and m < n) such

that for all z satisfying |z| = r /∈ [0, 1]
∪
E, we have∣∣∣ f (n)(z)

f (m)(z)

∣∣∣ ≤ B
(T (αr, f)

r
(logα r) log T (αr, f)

)n−m

. (2.8)

Lemma 2.9. Let f(z) be a transcendental entire function. Then there is a set E ⊂
(1,+∞) having finite logarithmic measure such that when we take a point z satisfying |z| =
r /∈ [0, 1]

∪
E and |f(z)| =M(r, f), we have∣∣∣ f(z)

f (s)(z)

∣∣∣ ≤ 2rs, s ∈ N. (2.9)

Proof. From the Wiman-Valiron theory (see [10, 11, 13, 16]), we have

f (s)(z)

f(z)
=

(ν(r)
z

)s

(1 + o(1)), (2.10)

where |z| = r /∈ [0, 1]
∪
E, E ⊂ (1,+∞) is of finite logarithmic measure such that |f(z)| =

M(r, f) and ν(r) denotes the central index of f(z). Since f is transcendental, ν(r) → ∞ (r →
∞). Hence when z satisfies |z| = r /∈ [0, 1]

∪
E and |f(z)| =M(r, f), by (2.10) we get (2.9).

Lemma 2.10. Let Hj (j = 0, · · · , k − 1) be entire functions with σ(Hj) ≤ σ < ∞. If

f(z) is a solution of the differential equation

f (k) +Hk−1f
(k−1) + · · ·+H0f = 0,

then σ2(f) ≤ σ.

Proof. Using the Wiman-Valiron theory, we can easily prove Lemma 2.10.

§3. Proofs of Theorems 1.5 and 1.6, Corollary 1.1

Proof of Theorem 1.5. Assume that f(z) is a transcendental solution of (1.5). First

we show that σ(f) = ∞. Suppose to the contrary that σ(f) = σ <∞. By Lemma 2.5, there

exists a set E1 ⊂ [0, 2π) which has linear measure zero, such that if θ ∈ [0, 2π)\E1, then

there is a constant R = R(θ) > 1 such that for all z satisfying arg z = θ and |z| ≥ R and for

j = s+ 1, · · · , k, we have ∣∣∣f (j)(z)
f (s)(z)

∣∣∣ ≤ |z|M , (3.1)
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where M (> 0) is a constant. Set

E2 = {θ| cos(φ+ θ) = 0}.

Then E2 is a finite set. For any θ ∈ [0, 2π)\(E1

∪
E2), we have cos(φ+θ) > 0 or cos(φ+θ) <

0. We divide it into two cases: (a) cos(φ+ θ) > 0, and (b) cos(φ+ θ) < 0.

Case (a) cos(φ + θ) > 0. By hshl ̸≡ 0 we have hs ̸≡ 0. By Lemma 2.3, for any given

ε (0 < 3ε < ds−d
ds

), we obtain for sufficiently large r,

exp{(1− ε)dsr cos(φ+ θ)} ≤ |Hs(re
iθ)| ≤ exp{(1 + ε)dsr cos(φ+ θ)}, (3.2)

|Hj(re
iθ)| ≤ exp{(1 + ε)dr cos(φ+ θ)}, j ̸= s. (3.3)

Now we prove that |f (s)(reiθ)| is bounded on the ray arg z = θ. If |f (s)(reiθ)| is unbounded
on the ray arg z = θ, then by Lemma 2.4, there exists an infinite sequence of points zq =

rqe
iθ (q = 1, 2, · · · ) such that as rq → ∞, f (s)(zq) → ∞ and∣∣∣f (j)(zq)

f (s)(zq)

∣∣∣ ≤ (1 + o(1))|zq|s−j , j = 0, · · · , s− 1. (3.4)

Substituting (3.1)–(3.4) into (1.5), we obtain

exp{(1− ε)dsrq cos(φ+ θ)} ≤ |Hs(zq)|

≤
∣∣∣f (k)(zq)
f (s)(zq)

∣∣∣+ · · ·+
∣∣∣Hs+1(zq)

f (s+1)(zq)

f (s)(zq)

∣∣∣
+
∣∣∣Hs−1(zq)

f (s−1)(zq)

f (s)(zq)

∣∣∣+ · · ·+
∣∣∣H0(zq)

f(zq)

f (s)(zq)

∣∣∣
≤ k exp{(1 + ε)drq cos(φ+ θ)}|zq|M . (3.5)

By (3.5), we obtain

exp
{1

3
(ds − d)rq cos(φ+ θ)

}
≤ rMq . (3.6)

This is a contradiction. Hence |f (s)(reiθ)| ≤M on arg z = θ. We can easily obtain

|f(reiθ)| ≤Mrk (3.7)

on arg z = θ.

Case (b) cos(φ+ θ) < 0. We can use the same reasoning as in Case (a) by replacing Hs

with Hl to prove that

|f(reiθ)| ≤Mrk (3.8)

on the ray arg z = θ. By Lemma 2.7, combining (3.7), (3.8) and the fact that E1

∪
E2 has

linear measure zero, we know that f(z) is a polynomial which contradicts our assumption.

Therefore σ(f) = ∞.

Secondly, we show that σ2(f) = 1. Assume σ2(f) = α < 1. By Lemma 2.8, we know that

there is a set E3 ⊂ (1,+∞) which has finite logarithmic measure, and there is a constant

A > 0, such that ∣∣∣f (j)(z)
f (d)(z)

∣∣∣ ≤ A(T (2r, f))2k, k ≥ j > d ≥ 0 (3.9)

hold for |z| = r /∈ E3 and for sufficiently large r.
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By the Wiman-Valiron theory, we have basic formulas

f (j)(z)

f(z)
=

(ν(r)
z

)j

(1 + o(1)), j = 1, · · · , k, (3.10)

where z satisfies |f(z)| = M(r, f), |z| = r /∈ [0, 1]
∪
E4, E4 ⊂ (1,∞) has finite logarithmic

measure, ν(r) is the central index of f(z).

By Lemma 2.2, we can choose a point range {zn = rne
iθn} such that f(zn) = M(rn, f),

θn ∈ [0, 2π), lim
n→∞

θn = θ0, rn /∈ [0, 1]
∪
E3

∪
E4, rn → ∞ and for any given ε1 (0 < 3ε1 <

min{1− α, ds−d
ds

}), for sufficiently large rn, we have

lim
n→∞

log ν(rn)

log rn
= ∞, (3.11)

exp{rα−ε1
n } ≤ ν(rn) ≤ exp{rα+ε1

n }. (3.12)

For θ0, we have Re{asz} = dsr cos(φ+ θ0), Re{alz} = −dlr cos(φ+ θ0). For cos(φ+ θ0),

there are three cases: (i) cos(φ + θ0) > 0; (ii) cos(φ + θ0) < 0; (iii) cos(φ + θ0) = 0. We

consider the three cases respectively.

Case(i) cos(φ+ θ0) > 0. By (1.5) we have

hse
asz =

(f (k)
f (s)

+ hk−1e
ak−1z

f (k−1)

f (s)
+ · · ·+ hs+1e

as+1z
f (s+1)

f (s)

)
+
(
hs−1e

as−1z
f (s−1)

f
+ · · ·+ h1e

a1z
f ′

f
+ h0e

a0z
) f

f (s)
. (3.13)

For sufficiently large n, cos(φ + θn) > 0 hold since θn → θ0 and cos(φ + θ0) > 0. Hence for

sufficiently large n, by Lemma 2.3, we know that θn satisfies

|hseaszn | ≥ exp{(1− ε1)dsrn cos(φ+ θn)}, (3.14)

|hjeajzn | ≤ rMn exp{(1 + ε1)drn cos(φ+ θn)} for j ̸= s. (3.15)

By Lemma 2.9, we know that when zn = rne
iθn satisfies |f(zn)| =M(rn, f), we have∣∣∣ f(zn)

f (s)(zn)

∣∣∣ ≤ rkn. (3.16)

For the point range {zn = rne
iθn}, substituting (3.9), (3.14)–(3.16) into (3.13), as n suffi-

ciently large, we obtain

exp{(1− ε1)dsrn cos(φ+ θn)}
≤ AkrMn exp{(1 + ε1)drn cos(φ+ θn)}(T (2rn, f))2k. (3.17)

Hence

exp
{1

3
(ds − d) cos(φ+ θn)rn

}
≤ AkrMn (T (2rn, f))

2k. (3.18)

By (3.18), we get σ2(f) ≥ 1.

Case (ii) cos(φ+ θ0) < 0. We can use the same reasoning as in the case (i) by replacing

hse
asz with hle

alz to prove that if θ0 satisfies the case (ii), then σ2(f) ≥ 1.

Case (iii) cos(φ + θ0) = 0. Since zn = rne
iθn satisfies rn → ∞, θn → θ0 as n → ∞, the

ray argw = φ + θ0 is an asymptotic line of {ajzn} (j = 0, · · · , k − 1). Hence there is an

N > 0, such that when n > N , by Re{ajrneiθ0} = 0, we have for j = 0, · · · , k − 1,

−1 < Re{ajrneiθn} < 1,
1

e
< |eajzn | < e, rM1 ≤ |hjeajzn | ≤ rM2 , (3.19)
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where M1,M2 are two positive integers. By (1.5), (3.10) and (3.19), we have(
− ν(rn)

zn

)k

(1 + o(1)) = Hk−1(zn)
(ν(rn)

zn

)k−1

(1 + o(1)) + · · ·+H0(zn),
(3.20)

ν(rn)(1 + o(1)) ≤ rM . (3.21)

(3.21) contradicts (3.11). This shows that the case (iii) can not occur. In the cases (i) and

(ii), we have proved that σ2(f) ≥ 1. Combining this and Lemma 2.10, we have σ2(f) = 1.

Proof of Theorem 1.6. Using the similar proof as that of Theorem 1.5, we can prove

Theorem 1.6.

Proof of Corollary 1.1. Since any nonzero polynomial does not satisfy each of Equa-

tions (1.7)–(1.12), by Theorems 1.5 and 1.6, we know that Corollary 1.1 holds.
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