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Abstract: This paper is devoted to the investigation of the asymptotic behavior for a
class of nonlinear parabolic partial functional differential equations. The boundedness
and stability of the solutions are established by the upper-lower solution method. Some
conditions are obtained by using the semigroup theory, the properties of nonnegative
matrices and the techniques of inequalities to determine the asymptotically stable region
of the equilibrium.
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1. Introduction

In this paper, we consider the following parabolic partial functional differential equa-
tions with Neumann boundary condition

QuiltX) = Auy(t,x) — wiwi(t, x) + fi(x, 1, ug)
(i=1,---,m) in D20,+00) x 0,
QuiltX) _ ¢ (i=1,---,m) on S2(0,+00)x 90,
ui(t,x) = @i(t,x) (i=1,---,m) in J; xQ 4 [-7:,0] x Q,

(1.1)

in which x = (2,---,2,) is a row vector, A = Y0, 5%2—, w; are positive real number,

2 is a bounded set in R™ with C'*® smooth boundary 82, u = (u1(¢,x),- -, um(¢,x))
and ug = (uy4,-**,um,.) Where, for any t > 0, each u;, represents a function on J; x Q
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defined by u;.(0,x) = w;(t + 6,x) with x € Q and 8 € [-r;,0], 7; is positive real number,
5‘9; denotes the outward normal derivative to 9Q and each ; is a given Holder continuous
function on J; X Q, fi(x,u,v) is HSlder continuous in x with f;(x,0,0) = 0 and a certain
type of condition to be made precise later.

The asymptotic behavior of solutions for the partial functional differential equations
has been studied in recent years by many authors and various results have reported (see
[1]-[8]). Most of these results are concerning the global stability of partial functional differ-
ential equations (see [1]-[4]). However, there are more equilibria for nonlinear differential
and global stability usually does not exist. How far can the the initial values be allowed
to vary without disrupting the stability properties established in the immediate vicinity
of equilibrium states? Martin and Smith®® and Poziol®] proved that all solutions of the
equations with initial data belonging to specified region, converge to some steady state of
the equations as ¢ — +o0o uniformly in z € Q under suitable hypotheses. But they didn’t
give out the range of the region. To our knowledge, little has been reported for results
on range of the region for partial functional differential equations. In the paper, we will
discuss the locally asymptotic stability of the equations (1.1) and give out some conditions
to determe asymptotically stable region of the equations.

2. Notations and terminologies

Let C(X,Y’) denote the class of continuous mapping from the topological space X to
the topological space Y and C*(J; x ) the space of Hélder continuous functions in J; X
with exponent a € (0,1). We use the product spaces C& = C*(J1 X Q) X + - X C(Jn X )
withr = (r1,++,7) and C(Q) = C(QW, R)x - -xC(Q'™, R) with Q1 & [—r;, +00)x L.
The symbol p(A) denotes the spectral radius of a square matrix A. The notation W,(A)
is used to denote the characteristic space associated with p(A). Definitions of upper-lower
of the equations (1.1) and mixed quasimonotone functions can be found in [2].

Given a pair of coupled functions ,we define a sector in C(Q) by

(,a)={uecC@):a4<u<i in@Q}.

Throughout this paper, we assume that f satisfies the locally Lipschitz continuous
property and

m

(A) fi(x, 0, ut)] E ([ueds )il i=1,-,m, (t,x)€D, (2.1)
where [ug]%, » = (lurellooris s 1umetlloor), 1uitlloor; = max max |ui(+6, )|, |uielr; =
—ri<8<0 xe
max ]u,(t+0 x)|, pij(v), 7 = 1,-- -, m, are nonnegative nondecreasing continuous func-

txon inv € RT.
With the help of [2, Theorem 3.1}, we obtain easily the following lemmas.

Lemma 2.1 If there exists a nonnegative row vector K such that

P(K)KT < K7, (2.2)
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where P(K) = [EJ“E—K—)] is a m x m matrix and KT is transpose of K, and f is mixed quasi-
monotone in {(—K,K), then the equations (1.1) has a unique solution u(t,x) € (~K, K)
when —K < ¢ < K.

Lemma 2.2 Under conditions of Lemma 2.1, the zero solution 0 of the equations (1.1)
is stable.

Definition 2.1 A nontrivial set W(0) C Cy is called to be an asymptotically stable
region of the equilibrium O to the equations (1.1) if the solution 0 of the equations is
stable and for any ¢ € W(0),

lim u(t,x)=0 uniformly for x¢€ Q. (2.3)

t— 400

When W(0) = Cg, the equilibrium 0 of the equations (1.1) is called to be globally asymp-
totically stable.
The usual norms in the spaces X, = LP(Q;R) X =(or L=(2;R) are denoted by

1 L
llull, = {ﬂ/(; lu(x)[Pdx}», for u€ X,, 1< p< 4oo,
||l = max |u(x)|, for u € X,
xef

where || is measure of . Define a closed linear operator Ag) in X, with domain D(Ag))
by A,([,i) = -A 4w, D(A,(f)) = {u; € W*P(Q; R); %} = 0 on 092}. It is well known that
—-A,(,i) generates an analytic semi-group of bounded linear operators {T,Ei)(t)}tzo on X,.
By elementary Hilbert space arguments (see [9]),

T (Owilla < et

3. Main results

In this section we will be concerned with establishing some conditions for calculating
out asymptotically stable region of the equilibrium 0 for the nonlinear parabolic partial
functional differential equations. The equations in (1.1) satisfy the following abstract
integral equations (see [3] or [8])

{ ui(t) = T (0)i0,-) + f3 T (¢ - o) fi(x, u,us)ds, ¢ >0, 3.1)
U0 = ¢,

wherei=1,---,m.

Theorem 3.1 If f(x, u, v) is mixed quasimonotone for u, v in C(Q) and the set W(0)\{0}
is nonempty, where

W(0) = Ukec Pk, £={KeRP:P(K)K? <KT}

— 451 —

© 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.



Pg ={p e Cy : -K < p < K, p(P(K)) < 1},
then W(0) is an asymptotically stable region of the equilibrium 0 to the problem (1.1).
Proof Letting u(t,x) = u(t)(x) be a solution of (1.1), we have, from (3.1), taking p = 2,

(i) b )
lwi(t)llz < ||IT, (t)%-(O,-)IIer/0 175" (t - s)fi(-yu,us)l|2ds,

-y ¢ —w;(t—s 1 — i
U pi(0, o+ [ L |15 pilult sl Pl s,
0 I | nj:l
t> 0. (3.2)

Stability of the solution 0 is obvious by Lemma 2.1, we only prove that (2.3) holds.
We first show that, for ¢ € W(0), that is, there is a nonnegative row vector K such
that P(K)KT < KT, -K < ¢ <K, and p(P(K)) < 1, we have,

Jm (o)l = 0. (33)

By Lemma 2.1, it follows that u € (-K,K) when —~K < ¢ < K. Thus ||u;(¢t)}l2 < Kj,
for i = 1,---,m, where K; is i-th component of vector K. So there is a nonnegative

constant row vector ¢ = (o1, -+, 0p,) such that
lim sup||uilla =0y, i=1,---,m. (3.4)
t—r 400

According to the definition of limsup and (3.4), for a sufficient small constant ¢ > 0, there
is t; > 0 such that, for any ¢t > t;,

[|ui(t + 0, )2 < (1 +€)ai, i=1,---,m, —r; <O<0. (3.5)

Taking T > maxls,-s,n{—%f}, for the above ¢, there must be

400
/ et ds < e. (3.6)
T

Then, by the boundedness of u, (3.2), (3.5) and (3.6), we get, for ¢t > ¢; + T,

t-T m «
sl el + [ €0 Y pig (K)ol dst

i=1
t
/ e~wilt=2) ZP'J )1+ ¢€)ojds
t—T
_“,T m
e pillar + € ZPU(K)K plme Zpu(K)(l + €)aj,
i=1

where ||@;[|2,-, = max_, <o<o [|ill2-
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Thus, letting ¢ — +o00 and € — 0, we get

< E?:l pij(K)o;
ST e

1

or o7 <P(K)oT.

If o > 0 and o # 0, then, by Theorem 8.3.2 of [10],
o(P(K)) > 1.

This contradicts p(P(K)) < 1. Hence (3.3) holds.
Next, we prove that

lim w(t,x)=0 i=1,---,m, uniformly for x € Q.

t—+o00

By means of the boundedness of u;(¢,x) and the following inequality, for any p > 2,

p=2

st x)lp < lult, X)lod uilt, x)|[3F, i=1,---,m, t >0,

we have
“ui(t,x)”PSM? i:]-""ama t201

in which M is a positive constant and im¢, ;o ||ui(t,x)||p =0 ¢ =1,---, m. By using the
same argument similar to that of Yamadal®, we obtain (2.3), and the proof is complete. O

Theorem 3.2 Iff(x,u,v) is mixed quasimonotone for u, v in C(Q) and the set W¢(0)\{0}
is nonempty, where

We(0) = Ukee Pk, £={KeRP:PK)KT <K},
Px ={p € C7 : K < ¢ <K, p(P(K)) < 1,[¢l7; € W,(P(K))},

with (], = (lle1ll2ry s |@mll2,rm ), then for ¢ € We(0), there is positive constant A
such that the solutions u of the problem (1.1) satisfy

luwi(t)ll2 < Neillarie™, i=1,---,m, t>0. (3.7)

Proof From p(P(K)) < 1, there exists sufficient small positive constant A with A <
min; <ij<m{w;i} such that

wi

r(P(K))

wi_/\<1 for i=1,.--,m. (3.8)

Multiplying (3.2) by e, it follows that, fori =1,---,m,

lus(t)ll26Y < €™ N)fi(0, ) [+

¢ —(wi— —8) s 1 - i
/ e~ (@imA)(t=9) A {_Q._/[Zp,.j([us];,,);uj‘,pj]zdz}zds, t>0.  (3.9)
0 | ! 0 j=1
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We first show that, for ¢ € W<(0), that is, there is a nonnegative row vector K such
that P(K)KT < KT, -K < ¢ < K, [¢]f; € W,(P(K)) and p(P(K)) < 1, it holds that

Case 1
lui(t)ll2 =0, i¢gT, t>0 (3.10)

Case 2
ui(t)llz* < dllillzr, i€T, t>0, (3.11)

where d € (l,nﬁnier{ﬁﬁ:}) and I' = {¢: ||@illar; #0,4=1,---,m}.

Case 1 Noticing that [p]5, € W,(P(K)) means

Z”” B pslar; = PPl

we have
pi;(K)=0, i¢T, jeT.

By Lemma 2.1, u €< ~K,XK > when —K < ¢ < K. From (3.2), it follows that

S l(olls € 3 [ € S pis(Kllusallds, 12 0.

gl gl Jér

By Bellman inequality, we have

lwi(t)l| =0, ¢¢T, t>to

Case 2 If (3.11) is not true, then there must be some ! € I' and ¢, > 0 such that

lw(t2)ll2e*? = dll@illzr,  [u(t)llze* < dll@illar, for ¢ <ta,
lwi(e)ll2e™ < dligillze;  for t <t (3.12)

Thus, it follows that
diellze = llu(tz)l|ze*"

<e—(w, ,\)t2“<P1“2 l+/ —(wl A){ta~ J)ZPIJ K)d”(p]”z,.,ds
j=1

—(wy— e (= Pl
e~ Nyl (1— e *”Z)dZ =L H @;ll2.r;

dw
__l_/\p(P(K))”‘Pl“?y"l

e il + (1 - em )
wp —

<dlletl|2,r,»
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which is a contradiction, and so (3.1) holds. Letting d — 1, we get

lwi(@llz < llpillzrie™, (E=1,---,m,) t20. o
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