首页 | 官方网站   微博 | 高级检索  
     

LiNi0.5Co0.2Mn0.3O2正极材料的高电压研究
引用本文:兰超波,张骞,邱世涛,蒙福海,吴理觉,钟盛文.LiNi0.5Co0.2Mn0.3O2正极材料的高电压研究[J].有色金属科学与工程,2019,10(4):72-77.
作者姓名:兰超波  张骞  邱世涛  蒙福海  吴理觉  钟盛文
作者单位:江西理工大学材料科学与工程学院,江西 赣州,341000;广东佳纳能源科技有限公司,广东 清远,513000
基金项目:国家自然科学基金资助项目51874151广东省扬帆计划引进创新创业团队专项资金资助项目粤财教[2017]108号
摘    要:使用LiNi0.5Co0.2Mn0.3O2正极材料制作出软包电池,在不同电压上限(4.2 V、4.25 V、4.3 V、4.35 V)下进行电化学测试,再采用X射线衍射(XRD)和扫描电镜(SEM), 对循环100次后的极片进行结构和形貌表征. XRD图谱表明,循环100次后的材料仍具有α-NaFeO2型结构,并且仍是层状结构,但电压上限为4.35 V时材料I003/I104值小于1.2,出现了较高的阳离子混乱.在4.2 V、4.25 V、4.3 V和4.35 V的电压上限下,电池的首次放电容量依次为161.5 mAh/g、162.9 mAh/g、169.2 mAh/g和176.6 mAh/g.相较于4.2 V,电压上限为4.25 V、4.3 V和4.35 V时, 容量提高率依次为0.87%、4.77%和9.35%.电压上限为4.2 V、4.25 V、4.3 V和4.35 V的电池200次循环(0.2 C)测试后,容量保持率依次为95.09%、94.41%、95.52%、95.56%.虽然电压上限为4.35 V时材料出现阳离子无序,但其电化学性能却是最好的,可能是由于Co离子高价迁移到Li层时注入过量电荷,使通过大的二次粒子内部晶界网络时具有高电子传导性. 

关 键 词:LiNi0.5Co0.2Mn0.3O2  高电压  锂离子电池  电化学性能
收稿时间:2019-01-07

Study on high-voltage cathode material LiNi0.5Co0.2Mn0.3O2
Affiliation:1.School of Materials Science and Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China2.Guangdong Jiana Energy Technology Co., Ltd., Qingyuan 513000, China
Abstract:Soft package lithium-ion batteries were fabricated by using LiNi0.5Co0.2Mn0.3O2 as cathode material, and electrochemical tests were performed at different upper voltage limits (4.2 V, 4.25 V, 4.3 V, 4.35 V). X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to characterize the structure and morphology of the pole pieces after 100 cycles. The XRD pattern showed that the batteries after 100 cycles still had a α-NaFeO2 type structure and a layered structure. But the batteries′ I003/I104 ratio was less than 1.2 and cation disorder increased when the upper limit of voltage was 4.35 V. When the upper voltage limits was 4.2 V, 4.25 V, 4.3 V, and 4.35 V, the first discharge capacity of the batteries was 161.5 mAh/g, 162.9 mAh/g, 169.2 mAh/g, and 176.6 mAh/g, respectively. When the upper voltage limit was 4.25 V, 4.3 V and 4.35 V, the capacity was 0.87%, 4.77% and 9.35% higher than that at the upper voltage limit of 4.2 V, respectively. After 200 cycles (0.2 C), the batteries′ capability retention rate was 95.09%, 94.41%, 95.52%, and 95.56%, respectively, at the upper voltage limits of 4.2 V, 4.25 V, 4.3 V and 4.35 V. At the upper voltage limit of 4.35 V, although the batteries had cation disorder, their electrochemical performance was the best. It may be due to excessive charge injection of high valence Co ions into the Li layer. Thus, high electron conductivity was obtained when Co ions passed through the grain boundary network inside the large secondary particles. 
Keywords:
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《有色金属科学与工程》浏览原始摘要信息
点击此处可从《有色金属科学与工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号