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Abstract In this paper, by using the method of Picard-Fuchs equation and
Riccati equation, we study the upper bounds for the associated number of zeros
of Abelian integrals for two classes of quadratic reversible centers of genus one
under any polynomial perturbations of degree n, and obtain that their upper
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1. Introduction

Consider a planar polynomial system of the form

dx

dt
=
Hy(x, y)

N(x, y)
+ µp(x, y),

dy

dt
= −Hx(x, y)

N(x, y)
+ µq(x, y), (1.1)

where µ (0 < µ � 1) is a real parameter,
Hy(x,y)
N(x,y) , Hx(x,y)

N(x,y) , p(x, y), q(x, y) are any

polynomials of x, y, max
{

deg
(
Hy(x,y)
N(x,y)

)
,deg

(
Hx(x,y)
N(x,y)

)}
= m, max {deg(p(x, y)), }

{deg(q(x, y))} = n. System (1.1) is an integrable system when µ = 0, where H(x, y)
is a first integral, and N(x, y) is an integrating factor. Further, we suppose that
system (1.1) has at least a center when µ = 0. i.e., we can define a continuous
family of ovals

Γh ⊂
{

(x, y) ∈ R2 : H(x, y) = h, h ∈ Ω
}
,

which are defined on a maximal open interval Ω = (h1, h2). The question of this
paper is: for any small µ, how many limit cycles in system (1.1) can be bifurcated
from the period annulus Γh? It is well known that in any compact region of the
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period annulus, the number of limit cycles of system (1.1) is no more than isolated
zeros of the following Abelian integral A(h),

A(h) =

∮
Γh

N(x, y) [q(x, y) dx− p(x, y) dy] , h ∈ Ω. (1.2)

A) If µ = 0, and (1.1) is a Hamiltonian system, that is, N(x, y) is a real number,
and N(x, y) 6= 0, deg(H(x, y)) = m + 1. Finding an upper bound Z(m,n) for
the number of the isolated zeros of the Abelian integral A(h) is an important and
significant problem, where the upper bound Z(m,n) only depends on m, n and
does not depend on the concrete forms of H(x, y), p(x, y), and q(x, y). It is called
the weakened Hilbert’s 16th problem by Arnold in [1]. This problem has been
studied widely, such as, researchers obtain plentiful important results for Liénard
systems [9, 10], and more details can be found in the books [2, 4], and the review
article [7].

B) If µ = 0, however (1.1) is an integrable non-Hamiltonian system, that is,
N(x, y) is not a real number. Maybe N(x, y) and H(x, y) are not polynomials, so
the study of the associated Abelian integral become much more difficult. Thus,
researchers consider this problem by starting from the simplest case: the degrees of
the unperturbed systems are low, specific, m = 2, and conjecture that the upper
bound linearly depends on n, nevertheless, this conjecture is still far from being
solved.

For quadratic reversible centers of genus one, there are essentially 22 cases in
the classification in [3], namely (r1)–(r22). The linear dependance of case (r1) was
studied in [11]; cases (r3)–(r6) were studied in [8]; cases (r9), (r13), (r17), and
(r19) were studied in [6]; cases (r11), (r16), (r18), and (r20) were studied in [5],
all of these upper bounds linearly depend on n. In order to thoroughly study these
problems, whereas we consider other two cases (r21) and (r12), we obtain that their
upper bounds are 3n − 3 (n ≥ 2) and 18

[
n
2

]
+ 3

[
n−1

2

]
(n ≥ 4), respectively, both

of the two upper bounds linearly depend on n.
The forms of cases (r21) and (r12) are as follows

(r21)
ẋ = −xy, ẏ = −y2 + 1

24x− 1
24 .

H(x, y) = x−2
(

1
2y

2 − 1
24x+ 1

25

)
= h, h ∈

(
− 1

25 , 0
)
,

(1.3)

with an integrating factor N(x, y) = x−3;

(r12)
ẋ = −xy, ẏ = − 1

6y
2 + 1

32·26x− 1
32·26 .

H(x, y) = x−
1
3

(
1
2y

2 + 1
3·27x+ 1

3·26

)
= h, h ∈

(
1
27 ,+∞

)
,

(1.4)

with an integrating factor N(x, y) = x−
4
3 .

In this paper, our main results include the following theorem.

Theorem 1.1. For any polynomials p(x, y) and q(x, y) of degree n, the upper
bounds for the corresponding number of zeros of the Abelian integral

A(h) =

∮
Γh

N(x, y) [q(x, y) dx− p(x, y) dy] , h ∈ Ω,

where Γh are orbits of the corresponding system given above, which linearly depend
on n. Concretely, for (r21), the upper bound is 3n−3 when n ≥ 2, 0 when n = 1, 0;
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for (r12), the upper bound is 18
[
n
2

]
+ 3

[
n−1

2

]
when n ≥ 4, 33 when 1 ≤ n ≤ 3, 0

when n = 0.

2. Abelian Integral

Suppose polynomials p(x, y) =
∑

0≤r+s≤n
ar,sx

rys, q(x, y) =
∑

0≤r+s≤n
br,sx

rys, so, the

Abelian integral A(h) in Theorem 1.1 has the form

A(h) =

∮
Γh

x−ν

 ∑
0≤r+s≤n

br,sx
rysdx−

∑
0≤r+s≤n

ar,sx
rysdy

 ,

where x−ν is an integrating factor.
For concision, Abelian integral is denoted by Ir,s(h) as follows:

Ir,s(h) =

∮
Γh

xr−νysdx,

where r = −1, 0, 1, · · · , n− 1, n; s = 0, 1, 2, · · · , n, n+ 1. When s = 1, we use Jr(h)
instead of Ir,1(h).

Note that∮
Γh

xr−νysdy =

∮
Γh
xr−νdys+1

s+ 1
=
ν − r
s+ 1

∮
Γh

xr−ν−1ys+1dx =
ν − r
s+ 1

Ir−1,s+1(h).

Thus, A(h) can be written as

A(h) =
∑

0≤r≤n,
0≤s≤n,

0≤r+s≤n

br,sIr,s(h) +
∑

0≤r≤n,
0≤s≤n,

0≤r+s≤n

ar,s
r−ν
s+1 Ir−1,s+1(h) =

∑
−1≤r≤n,
0≤s≤n+1,
0≤r+s≤n

b̃r,sIr,s(h).

(2.1)
For the Abelian integral A(h), we have the following proposition.

Proposition 2.1. 1) For (r21), the Abelian integral A(h) can be expressed as

A(h) =

 1
hn−2K(h), K(h) = α(h)J0(h) + β(h)J1(h), (n ≥ 2),

α(h)J0(h), (n = 0, 1),
(2.2)

where deg(α(h)) ≤ n− 2, deg(β(h)) ≤ n− 1, when n ≥ 2; and deg(α(h)) = 0, when
n = 0, 1.

2) For (r12), the Abelian integral A(h) can be expressed as

A(h) =

α(h)J0(h) + β(h)J 1
3
(h) + γ(h)J 2

3
(h), (n ≥ 1),

δ(h)J−1(h), (n = 0),
(2.3)

where deg(α(h)) ≤ 3
[
n
2

]
− 3, deg(β(h)) ≤ 3

[
n
2

]
− 2, deg(γ(h)) ≤ 3

[
n−1

2

]
− 1,

when n ≥ 4; deg(α(h)) ≤ 3, deg(β(h)) ≤ 1, deg(γ(h)) ≤ 2, when n = 1, 2, 3; and
deg(δ(h)) = 0, when n = 0.
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Proof. For (r21) and (r12), because Ii,s(h) = 0 when s is an even number, we
only need to consider odd values for s.

1) For (r21), ν = 3, using C replace 1
25 , and it follows from (1.3) that

− x−3y2 + x−2y
∂y

∂x
+ 2Cx−2 − 2Cx−3 = 0. (2.4)

Multiplied (2.4) by xiys−2 and integrating over Γh, we obtain

i+ s− 2

s
Ii,s(h) = 2C [Ii+1,s−2(h)− Ii,s−2(h)] , (2.5)

where s is a positive odd number, i.e. s = 1, 3, 5, · · · , 2[n2 ] + 1, for system (r21), we
restrict i = −1, 0, 1, 2, 3, · · · , n− 1, and 0 ≤ i+ s ≤ n.
(i) If i+ s− 2 = 0, i.e., (i, s) = (1, 1), or (i, s) = (−1, 3), A(h) includes I1,1(h) and
I−1,3(h). Because I1,1(h) is J1(h), we mainly consider I−1,3(h). Let i = −1, and
s = 3, from equality (2.5), we obtain

J−1(h) = J0(h). (2.6)

(ii) If i+ s− 2 6= 0, i.e., (i, s) 6= (1, 1), and (i, s) 6= (−1, 3), we rewrite (2.5) as

Ii,s(h) =
2Cs

i+ s− 2
[Ii+1,s−2(h)− Ii,s−2(h)] , (2.7)

which indicates Ii,s(h) can be expressed in terms of Ii+1,s−2(h) and Ii,s−2(h), and
then step by step, thus, Ii,s(h) can be written as a linear combination of Ji(h)(i =
−1, 0, · · · ) and I−1,3(h) with the form

Ii,s(h) =



Ji(h), (i 6= 1, s = 1),
s−1
2∑

k=0

c(i,s), kJi+k(h), (i ≥ 0, s ≥ 3),

s−3
2∑

k=0

c(−1,s), kJk(h) + d−1,sI−1,3(h), (i = −1, s ≥ 5).

(2.8)

From (2.1) and (2.8), we get

A(h) = A1(h) +A2(h) +A3(h) +A4(h),

where A1(h) =
n−1∑
k=−1

b̃k,1Jk(h), A3(h) =
∑

5≤s≤2[ n2 ]+1,
s≡1mod 2

b̃−1,s

s−3
2∑

k=0

c(−1,s), kJk(h), A2(h)

=
∑

0≤r≤n−3,
s≡1mod 2,
3≤r+s≤n

b̃r,s

s−1
2∑

k=0

c(r,s), kJr+k(h), A4(h) = b̃−1,3I−1,3(h) +
∑

5≤s≤2[ n2 ]+1,
s≡1mod 2

b̃−1,sd−1,s×

I−1,3(h) = d̃−1,3I−1,3(h). For A2(h), the maximum number of r + k is r + s−1
2 =

n−3+ 3−1
2 = n−2, and the minimum number is 0+0 = 0. For A3(h), the maximum

number of k is
[
n+1−3

2

]
=
[
n−2

2

]
≤ n − 3 (n ≥ 4), and the minimum number is 0.

If denoted A1(h) +A2(h) +A3(h) by A5(h), i.e., A5(h) := A1(h) +A2(h) +A3(h),
so A5(h) is a linear combination of Jk(h)(k = −1, 0, · · · , n− 1), we have that

A(h) = A5(h) +A4(h) =

n−1∑
k=−1

ekJk(h) + d̃−1,3I−1,3(h), (2.9)
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where ek ∈ R (k = −1, 0, · · · , n− 1).
Again, it follows from (1.3) that

1

2
x−2y2 − 2Cx−1 + Cx−2 = h. (2.10)

Multiplied (2.10) by xi−1ys−2 and integrating over Γh, we obtain

1

2
Ii,s(h) = hIi+2,s−2(h) + 2CIi+1,s−2(h)− CIi,s−2(h). (2.11)

(i) If i+s−2 = 0, i.e., (i, s) = (1, 1), or (i, s) = (−1, 3), if ~ := 1
h , let i = −1, s = 3,

from equalities (2.6), (2.9) and (2.11), we obtain

I−1,3(h) = 2hJ1(h) + 4CJ0(h)− 2CJ−1(h) = 2hJ1(h) + 2CJ0(h),

thus,
~I4(h) = ~d̃−1,3I−1,3(h) = 2d̃−1,3C~J0(h) + 2d̃−1,3J1(h).

(ii) If i + s − 2 6= 0, i.e., (i, s) 6= (1, 1), and (i, s) 6= (−1, 3), let s = 3, by (2.7),
equality (2.11) can be written as

(i− 2)CJi(h) = (i+ 1)hJi+2(h) + (2i− 1)CJi+1(h), (i 6= −1). (2.12)

A) If i ≥ 2, we rewrite equality (2.12) as

~Ji(h) =
i− 4

i− 1
C~2Ji−2(h)− 2i− 5

i− 1
C~2Ji−1(h),

which indicates that ~Ji(h) can be expressed in terms of ~2Ji−2(h) and ~2Ji−1(h),
and then step by step, ~Ji(h) can be written as a linear combination of J0(h) and
J1(h) with polynomial coefficients of ~:

~Ji(h) = αi(~)J0(h) + βi(~)J1(h),

where 2 ≤ deg(αi(~)) ≤ i, 2 ≤ deg(βi(~)) ≤ i.
B) If i = 0, 1, ~Ji(h) can also be expressed by J0(h) and J1(h) as ~J0(h) =

~J0(h), ~J1(h) = ~J1(h).
C) If i = −1, from equality (2.6), we get

~J−1(h) = ~J0(h).

As a consequence, all ~Jk(h)(k = −1, 0, 1, · · · , n− 1) can be expressed in terms
of J0(h) and J1(h), so ~A5(h) and ~A4(h) can be expressed by J0(h) and J1(h).

If n ≥ 2, J(h) := ~A(h), from (2.9), using formulae above, we obtain

J(h) = ~A(h) = ~A5(h) + ~A4(h) = α(~)J0(h) + β(~)J1(h), (2.13)

where 1 ≤ deg(α(~)) ≤ n − 1, 0 ≤ deg(β(~)) ≤ n − 1. Multiplied (2.13) by hn−1

and if K(h) := hn−1J(h), we obtain

K(h) = hn−1J(h) = α(h)J0(h) + β(h)J1(h),

where deg(α(h)) ≤ n− 2, deg(β(h)) ≤ n− 1.
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If n = 0, 1, from (2.1) and (2.6), we obtain

A(h) = b̃−1,1J−1(h) + b̃0,1J0(h) =
(
b̃−1,1 + b̃0,1

)
J0(h) = α(h)J0(h),

where α(h) := b̃−1,1 + b̃0,1 and deg(α(h)) = 0.
2) For (r12), ν = 4

3 , using C replace 1
3·27 , and it follows from (1.4) that

− 1

6
x−

4
3 y2 + x−

1
3 y
∂y

∂x
+

2

3
Cx−

1
3 − 2

3
Cx−

4
3 = 0. (2.14)

Multiplied (2.14) by xiys−2 and integrating over Γh, we obtain

6i+ s− 2

s
Ii,s(h) = 4C [Ii+1,s−2(h)− Ii,s−2(h)] , (2.15)

where s is an odd number, i.e. s = 1, 3, 5, · · · , 2[n2 ] + 1, for system (r12), we restrict
i = 1

3 t (t = −3,−2,−1, 0, 1, · · · , 3n − 3) and 0 ≤ i + s ≤ n. So 6i + s − 2 6= 0,
equality (2.15) can be written as

Ii,s(h) =
4Cs

6i+ s− 2
[Ii+1,s−2(h)− Ii,s−2(h)] , (2.16)

which indicates Ii,s(h) can be expressed in terms of Ii+1,s−2(h) and Ii,s−2(h), and
then step by step, Ii,s(h) can be written as a linear combination of Ji(h)(i =
−1, 0, · · · ) with the form

Ii,s(h) =

s−1
2∑

k=0

c(i,s), kJi+k(h).

From equality (2.1), we get

A(h) =
∑

0≤r+s≤n,
−1≤r≤n,
s≡1mod 2

b̃r,s

s−1
2∑

k=0

c(r,s), kJr+k(h).

The maximum number of r+k is n−1+ 1−1
2 = n−1, and the minimum number

is −1 + 1−1
2 = −1, so A(h) is a linear combination of Jk(h)(k = −1, 0, · · · , n − 1),

we have that

A(h) =

n−1∑
k=−1

ekJk(h), (2.17)

where ek ∈ R (k = −1, 0, · · · , n− 1).
Again, it follows from (1.4) that

1

2
x−

1
3 y2 + Cx

2
3 + 2Cx−

1
3 = h. (2.18)

Multiplied (2.18) by xi−1ys−2 and integrating over Γh, we obtain

1

2
Ii,s(h) = hIi+ 1

3 ,s−2(h)− CIi+1,s−2(h)− 2CIi,s−2(h). (2.19)
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Let s = 3, using (2.16), equality (2.19) can be written as

4C(3i− 1)Ji(h) = (6i+ 1)hJi+ 1
3
(h)− (6i+ 7)CJi+1(h). (2.20)

A) If i ≥ 1, we rewrite equality (2.20) as

Ji(h) =
6i− 5

C(6i+ 1)
hJi− 2

3
(h)− 4(3i− 4)

6i+ 1
Ji−1(h),

which indicates that Ji(h) can be expressed in terms of hJi− 2
3
(h) and Ji−1(h), and

then step by step, Ji(h) can be written as a linear combination of J0(h), J 1
3
(h) and

J 2
3
(h) with polynomial coefficients of h:

Ji(h) = αi(h)J0(h) + βi(h)J 1
3
(h) + γi(h)J 2

3
(h),

where deg(αi(h)) ≤ 3
[
i+1
2

]
− 3, deg(βi(h)) ≤ 3

[
i+1
2

]
− 2, deg(γi(h)) ≤ 3

[
i
2

]
− 1,

when i ≥ 2; and deg(αi(h)) = 0, deg(γi(h)) = 1, βi(h) = 0, when i = 1.
B) If i = 0, Ji(h) can also be expressed by J0(h), J 1

3
(h), J 2

3
(h) as J0(h) = J0(h).

C) If i < 0, we rewrite equality (2.20) as

Ji(h) =
6i+ 1

4C(3i− 1)
hJi+ 1

3
(h)− 6i+ 7

4(3i− 1)
Ji+1(h),

which indicates that J−1(h) can be expressed in terms of J0(h), J 1
3
(h) and J 2

3
(h):

J−1(h) =
(

5
29C3h

3 + 1
16

)
J0(h) + 5

26ChJ 1
3
(h) + 25

29C2h
2J 2

3
(h).

As a consequence, all Jk(h)(k = −1, 0, 1, · · · , n − 1) can be expressed in terms
of J0(h), J 1

3
(h) and J 2

3
(h). By substituting these formulae into (2.17), we obtain

A(h) = α(h)J0(h) + β(h)J 1
3
(h) + γ(h)J 2

3
(h),

where deg(α(h)) ≤ 3
[
n
2

]
− 3, deg(β(h)) ≤ 3

[
n
2

]
− 2, deg(γ(h)) ≤ 3

[
n−1

2

]
− 1, when

n ≥ 4; and deg(α(h)) ≤ 3, deg(β(h)) ≤ 1, deg(γ(h)) ≤ 2, when n = 1, 2, 3.
If n = 0, from equality (2.1), we obtain A(h) = − 4

3a0,0J−1(h) = δ(h)J−1(h),
where δ(h) := − 4

3a0,0, and deg(δ(h)) = 0.

3. Picard-Fuchs Equation and Riccati Equation

Lemma 3.1. 1) For (r21), the Abelian integrals Ji(h) (i = 0, 1) satisfy the following
Picard-Fuchs equationJ0(h)

J1(h)

 =

h+ C 0

2C 2h

J ′0(h)

J ′1(h)

 . (3.1)

2) For (r12), the Abelian integrals Ji(h)
(
i = 0, 1

3 ,
2
3

)
satisfy the following Picard-

Fuchs equation 
J0(h)

J 1
3
(h)

J 2
3
(h)

 =


h 0 −3C

−4C 4
3h 0

0 − 12
5 C

4
5h



J ′0(h)

J ′1
3

(h)

J ′2
3

(h)

 . (3.2)
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Proof. 1) For (r21), by (1.3), we obtain y2 = 2hx2+4Cx−2C, ∂y∂h = x2

y , and ydy =

x2
(
x−3y2 − 2Cx−2 + 2Cx−3

)
dx. Since Ji(h) =

∮
Γh
xi−3ydx, J ′i(h) =

∮
Γh

xi−1

y dx,
we get

(i− 2)Ji(h) =
∮

Γh
ydxi−2 = −

∮
Γh
xi−2x2 x

−3y2−2Cx−2+2Cx−3

y dx

= −Ji + 2CJ ′i−1(h)− 2CJ ′i−2(h).
(3.3)

and

Ji(h) =
∮

Γh

xi−3y2

y dx =
∮

Γh

xi−3(2hx2+4Cx−2C)
y dx

= 2hJ ′i(h) + 4CJ ′i−1(h)− 2CJ ′i−2(h).
(3.4)

From (3.3), it follows that

(i− 1)Ji(h) = 2CJ ′i−1(h)− 2CJ ′i−2(h). (3.5)

From (3.4) and (3.5), we get

(i− 2)Ji(h) = −2hJ ′i(h)− 2CJ ′i−1(h). (3.6)

From (3.6), let i = 0, 1, we obtain

J0(h) = hJ ′0(h) + CJ ′−1(h), (3.7)

J1(h) = 2hJ ′1(h) + 2CJ ′0(h). (3.8)

By equality (2.6), we get
J ′−1(h) = J ′0(h). (3.9)

By (3.7)−(3.9), we obtain equation (3.1).

2) For (r12), by (1.4), we obtain 1
2x
− 1

3 y2 + Cx
2
3 + 2Cx−

1
3 = h, ∂y

∂h = x
1
3

y , and

ydy =
(

1
3hx

− 2
3 − C

)
dx. Since Ji(h) =

∮
Γh
xi−

4
3 ydx, J ′i(h) =

∮
Γh

xi−1

y dx, we get

Ji(h) =
∮

Γh

xi− 4
3 y2

y dx =
∮

Γh

xi− 4
3

(
2hx

1
3−2Cx−4C

)
y dx

= 2hJ ′i(h)− 2CJ ′
i+ 2

3

(h)− 4CJ ′
i− 1

3

(h),
(3.10)

and (
i− 1

3

)
Ji(h) =

∮
Γh

(
i− 1

3

)
xi−

4
3 ydx =

∮
Γh
ydxi−

1
3

= −
∮

Γh

xi− 1
3

(
1
3hx

− 2
3−C

)
y dx = − 1

3hJ
′
i(h) + CJ ′

i+ 2
3

(h).
(3.11)

From (3.10) and (3.11), it follows that

(3i− 1)Ji(h) = −hJ ′i(h) + 3CJ ′i+ 2
3
(h), (3.12)

(6i+ 1)Ji(h) = 4hJ ′i(h)− 12CJ ′i− 1
3
(h). (3.13)

From (3.12) and (3.13), let i = 0, 1
3 ,

2
3 , we get

J0(h) = hJ ′0(h)− 3CJ ′2
3
(h), (3.14)

3J 1
3
(h) = 4hJ ′1

3
(h)− 12CJ ′0(h), (3.15)

5J 2
3
(h) = 4hJ ′2

3
(h)− 12CJ ′1

3
(h). (3.16)

By (3.14)−(3.16), we obtain equation (3.2).
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Lemma 3.2. 1) For (r21), the Abelian integrals Ji(h) (i = 0, 1) satisfy the following
Picard-Fuchs equationJ ′0(h)

J ′1(h)

 =
1

B(h)

 2h 0

−2C h+ C

J0(h)

J1(h)

 , (3.17)

where B(h) = 2h(h+ 1
25 ).

2) For (r12), the Abelian integrals J ′i(h)
(
i = 0, 1

3 ,
2
3

)
satisfy the following Picard-

Fuchs equation 
J ′′0 (h)

J ′′1
3

(h)

J ′′2
3

(h)

 =
1

B(h)


−9C2 3Ch

−h2 9C2

−3Ch h2


J ′1

3

(h)

J ′2
3

(h)

 , (3.18)

where B(h) = 4
(
h− 1

27

) (
h2 + 1

27h+ 1
214

)
.

Proof. 1) For (r21), it can be calculated directly from equation (3.1).
2) For (r12), by differentiating both sides of equation (3.2) with respect to h,

we obtain
0 · J ′0(h) = −hJ ′′0 (h) + 3CJ ′′2

3
(h), (3.19)

J ′1
3
(h) = 12CJ ′′0 (h)− 4hJ ′′1

3
(h), (3.20)

J ′2
3
(h) = −12CJ ′′1

3
(h) + 4hJ ′′2

3
(h). (3.21)

By (3.19)−(3.21), we obtain equation (3.18).

Lemma 3.3. 1) For (r21), Ji
(
− 1

25

)
= 0 (i = 0, 1); Ji(h) < 0 (i = 0, 1), when

h ∈
(
− 1

25 , 0
)
.

2) For (r12), Ji
(

1
27

)
= 0

(
i = 0, 1

3 ,
2
3

)
; J−1(h) < 0, J ′i(h) > 0

(
i = 0, 1

3 ,
2
3

)
,

when h ∈
(

1
27 ,+∞

)
.

For (r21), since Ji(h) =
∮

Γh
xi−3ydx, for (r12), since Ji(h) =

∮
Γh
xi−

4
3 ydx

and J ′i(h) =
∮

Γh

xi−1

y dx. The proof only requires some simple calculation, so it is
omitted.

Corollary 3.1. 1) For (r21), if D(h) := J0(h)
J1(h) , D(h) satisfies the following Riccati

equation
B(h)D′(h) = 2CD2(h) + (h− C)D(h), (3.22)

where B(h) = 2h(h+ 1
25 ).

2) For (r12), if D(h) :=
J′1

3
(h)

J′2
3

(h) , D(h) satisfies the following Riccati equation

B(h)D′(h) = 3ChD2(h)− 2h2D(h) + 9C2, (3.23)

where B(h) = 4
(
h− 1

27

) (
h2 + 1

27h+ 1
214

)
.

Proof. For (r21) and (r12), using equations (3.17) and (3.18), and by differenti-
ating both sides of D(h) with respect to h, respectively, we obtain equations (3.22)
and (3.23).
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4. Upper Bound for the Associated Number

For (r12), if n ≥ 1, from equality (2.3), using equation (3.2), we obtain

A(h) = α1(h)J ′0(h) + β1(h)J ′1
3
(h) + γ1(h)J ′2

3
(h), (4.1)

where α1(h) = hα(h) − 4Cβ(h), β1(h) = 4
3hβ(h) − 12

5 Cγ(h), γ1(h) = 4
5hγ(h) −

3Cα(h), thus, when n ≥ 4, deg(α1(h)) ≤ 3
[
n
2

]
− 2, deg(β1(h)) ≤ 3

[
n
2

]
− 1,

deg(γ1(h)) ≤ 3
[
n−1

2

]
; when n = 1, 2, 3, deg(α1(h)) ≤ 4, deg(β1(h)) ≤ 2, deg(γ1(h))

≤ 3.

By differentiating both sides of equality (4.1) with respect to h and using equa-
tion (3.18), we obtain

B(h)A′(h) = B(h)α′1(h)J ′0(h) + β2(h)J ′1
3
(h) + γ2(h)J ′2

3
(h), (4.2)

where β2(h) = B(h)β′1(h)− h2β1(h)− 9C2α1(h)− 3Chγ1(h), γ2(h) = B(h)γ′1(h) +
h2γ1(h) + 3Chα1(h) + 9C2β1(h), thus, when n ≥ 4, deg(β2(h)) ≤ 3

[
n
2

]
+ 1,

deg(γ2(h)) ≤ 3
[
n−1

2

]
+ 2; when n = 1, 2, 3, deg(β2(h)) ≤ 4, deg(γ2(h)) ≤ 5.

By equalities (4.1) and (4.2), we get

B(h)α1(h)A′(h) = B(h)α′1(h)A(h) + I(h), (4.3)

I(h) = E(h)J ′1
3
(h) + F (h)J ′2

3
(h), (4.4)

where E(h) = α1(h)β2(h)−B(h)α′1(h)β1(h), F (h) = α1(h)γ2(h)−B(h)α′1(h)γ1(h),
thus, when n ≥ 4, deg(E(h)) ≤ 6

[
n
2

]
− 1, deg(F (h)) ≤ 3

[
n
2

]
+ 3

[
n−1

2

]
; when

n = 1, 2, 3, deg(E(h)) ≤ 8, deg(F (h)) ≤ 9.

Using Proposition 2.1, Corollary 3.1 and equality (4.4), after some simple cal-
culations, we obtain the following lemma.

Lemma 4.1. 1) For (r21), if n ≥ 2, W (h) := K(h)
J1(h) , W (h) satisfies the following

Riccati equation

B(h)α(h)W ′(h) = 2CW 2(h) +M(h)W (h) +G(h),

where M(h) = B(h)α′(h) + (h − C)α(h) − 4Cβ(h), G(h) = B(h)α(h)β′(h) −
B(h)α′(h)β(h)−(h−C)α(h)β(h)+2Cβ2(h), thus, deg(M(h)) ≤ n−1, deg(G(h)) ≤
2n− 2, for n ≥ 2.

2) For (r12), if n ≥ 1, W (h) := I(h)
J′2

3

(h) , W (h) satisfies the following Riccati

equation

B(h)E(h)W ′(h) = 3ChW 2(h) +M(h)W (h) +G(h),

where M(h) = B(h)E′(h)− 2h2E(h)− 6ChF (h), G(h) = 9C2E2(h) + 3ChF 2(h) +
B(h)E(h)F ′(h)−B(h)E′(h)F (h) + 2h2E(h)F (h), thus, when n ≥ 4, deg(M(h)) ≤
6
[
n
2

]
+ 1, deg(G(h)) ≤ 9

[
n
2

]
+ 3

[
n−1

2

]
+ 1; when n = 1, 2, 3, deg(M(h)) ≤ 10,

deg(G(h)) ≤ 19.

In the following, we use \A(h) to denote the number of zeros of A(h) in Ω, and
we need the following lemma.
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Lemma 4.2 ( [8]). The smooth functions V (h), φ(h), ψ(h), ξ(h), and η(h) satisfy
the following Riccati equation

η(h)V ′(h) = φ(h)V 2(h) + ψ(h)V (h) + ξ(h),

then

\V (h) ≤ \η(h) + \ξ(h) + 1.

Lemma 4.2 is the Lemma 5.3 in [8], and the proof can be found in [8], so it is
omitted.

Finally, we finish the proof of Theorem 1.1.

Proof. 1) For (r21), using Proposition 2.1, Lemmas 4.1 and 4.2, we get

\A(h) = \K(h) = \W (h) ≤ \B(h) + \α(h) + \G(h) + 1.

When n ≥ 2, since deg(α(h)) ≤ n − 2 and deg(G(h)) ≤ 2n − 2, noticing that
B(h) = 2h(h+ 1

25 ) and there is no zero in
(
− 1

25 , 0
)
, we obtain

\A(h) = \K(h) = \W (h) ≤ (n− 2) + (2n− 2) + 1 = 3n− 3.

When n = 0, 1, since A(h) = α(h)J0(h), where deg(α(h)) = 0, J0(h) 6= 0, we
get \A(h) = 0.

2) For (r12), using Lemma 4.2, from (4.3), we get

\A(h) ≤ \B(h) + \α1(h) + \I(h) + 1. (4.5)

Using Lemmas 4.1, we get

\I(h) = \W (h) ≤ \B(h) + \E(h) + \G(h) + 1. (4.6)

From (4.5) and (4.6), we obtain

\A(h) ≤ 2\B(h) + \α1(h) + \E(h) + \G(h) + 2.

When n ≥ 4, since deg(α1(h)) ≤ 3
[
n
2

]
− 2, deg(E(h)) ≤ 6

[
n
2

]
− 1, and

deg(G(h)) ≤ 9
[
n
2

]
+ 3

[
n−1

2

]
+ 1, noticing that B(h) = 4

(
h− 1

27

) (
h2 + 1

27h+ 1
214

)
and there is no zero in

(
− 1

3·26 , 0
)
, we obtain

\A(h) ≤
(
3
[
n
2

]
− 2
)

+
(
6
[
n
2

]
− 1
)

+
(
9
[
n
2

]
+ 3

[
n−1

2

]
+ 1
)

+ 2 = 18
[
n
2

]
+ 3

[
n−1

2

]
.

When n = 1, 2, 3, some similar discussions show that \A(h) ≤ 4+8+19+2 = 33.

When n = 0, since A(h) = δ(h)J−1(h), where deg(δ(h)) = 0, J−1(h) 6= 0, we
get \A(h) = 0.

Acknowledgements

The authors would like to thank Editor-in-Chief Professor Maoan Han for his very
valuable comments and suggestions.



1970 X. Hong, J. Lu & Y. Wang

References

[1] V. I. Arnold, Loss of stability of self-oscillation close to resonance and versal
deformations of equivariant vector fields, Funct. Anal. Appl., 1977, 11(2), 85–
92.

[2] C. Christopher and C. Li, Limit cycles of differential equations, Birkhäuser-
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