首页 | 官方网站   微博 | 高级检索  
     


Surface-induced evaporative cooling
Authors:Ke Min  Yan Bo  Cheng Feng and Wang Yu-Zhu
Affiliation:The Laboratory of Quantum Optics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China;  Center for Cold Atom Physics, Chinese Academy of Sciences, Shanghai 201800, China
Abstract:The effects of surface-induced evaporative cooling on an atom chip are investigated. The evolutions of temperature, number and phase-space density of the atom cloud are measured when the atom cloud is brought close to the surface. Rapid decrease of the temperature and number of the atoms is found when the atom-surface distance is < 100~μm. A gain of about a factor of five on the phase-space density is obtained. It is found that the efficiency of the surface-induced evaporative cooling depends on the atom-surface distance and the shape of the evaporative trap. When the atoms are moved very close to the surface, severe heating is observed, which dominates when the holding time is >8~ms. It is important that the surface-induced evaporative cooling offers novel possibilities for the realization of a continuous condensation, where a spatially varying evaporative cooling is required.
Keywords:atom chip  atom-surface distance  surface-induced evaporative cooling
本文献已被 维普 等数据库收录!
点击此处可从《中国物理 B》浏览原始摘要信息
点击此处可从《中国物理 B》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号