首页 | 官方网站   微博 | 高级检索  
     


Tunable Near‐Infrared Organic Nanowire Nanolasers
Authors:Xuedong Wang  Zhi‐Zhou Li  Ming‐Peng Zhuo  Yishi Wu  Shuo Chen  Jiannian Yao  Hongbing Fu
Affiliation:1. Jiangsu Key Laboratory for Carbon‐Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, P.R. China;2. Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing, P.R. China;3. Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, P.R. China;4. Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing, P.R. China
Abstract:Organic semiconductor nanowires have inherent advantages, such as amenability to low‐cost, low‐temperature processing, and inherent four‐level energy systems, which will significantly contribute to the organic solid‐state lasers (OSSLs) and miniaturized laser devices. However, the realization of near‐infrared (NIR) organic nanowire lasers is always a big challenge due to the difficultly in fabrication of organic nanowires with diameters of ≈100 nm and material issues such as low photoluminescence quantum efficiency in the red‐NIR region. What is more, the achievement of wavelength‐tunable OSSLs has also encountered enormous challenge. This study first demonstrates the 720 nm NIR lasing with a low lasing threshold of ≈1.4 µJ cm?2 from the organic single‐crystalline nanowires, which are self‐assembled from small organic molecules of (E )‐3‐(4‐(dimethylamino)‐2‐methoxyphenyl)‐1‐(1‐hydroxynaphthalen‐2‐yl)prop‐2‐en‐1‐one through a facile solution‐phase growth method. Notably, these individual nanowires' Fabry–Pérot cavity can alternatively provide the red‐NIR lasing action at 660 or 720 nm from the 0–1 or 0–2 radiative transition channels, and the single (660 or 720 nm)/dual‐wavelength (660 and 720 nm) laser action can be achieved by modulating the length of these organic nanowires due to the intrinsic self‐absorption. These easily‐fabricated organic nanowires are natural laser sources, which offer considerable promise for coherent light devices integrated on the optics microchip.
Keywords:nanowire photonics  near‐infrared  organic semiconductors  solid‐state lasers  wavelength‐tunability
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号