首页 | 官方网站   微博 | 高级检索  
     


Control of Switching Modes and Conductance Quantization in Oxygen Engineered HfOx based Memristive Devices
Authors:Sankaramangalam Ulhas Sharath  Stefan Vogel  Leopoldo Molina‐Luna  Erwin Hildebrandt  Christian Wenger  Jose Kurian  Michael Duerrschnabel  Tore Niermann  Gang Niu  Pauline Calka  Michael Lehmann  Hans‐Joachim Kleebe  Thomas Schroeder  Lambert Alff
Affiliation:1. Institute of Materials Science, Technische Universit?t Darmstadt, Darmstadt, Germany;2. IHP GmbH, Leibniz‐Institut für innovative Mikroelektronik, Frankfurt Oder, Germany;3. Institut für Optik und Atomare Physik, Technische Universit?t Berlin, Berlin, Germany;4. Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, Xi'an Jiaotong University, Xi'an, China;5. Brandenburgische Technische Universit?t, Cottbus, Germany
Abstract:Hafnium oxide (HfOx)‐based memristive devices have tremendous potential as nonvolatile resistive random access memory (RRAM) and in neuromorphic electronics. Despite its seemingly simple two‐terminal structure, a myriad of RRAM devices reported in the rapidly growing literature exhibit rather complex resistive switching behaviors. Using Pt/HfOx/TiN‐based metal–insulator–metal structures as model systems, it is shown that a well‐controlled oxygen stoichiometry governs the filament formation and the occurrence of multiple switching modes. The oxygen vacancy concentration is found to be the key factor in manipulating the balance between electric field and Joule heating during formation, rupture (reset), and reformation (set) of the conductive filaments in the dielectric. In addition, the engineering of oxygen vacancies stabilizes atomic size filament constrictions exhibiting integer and half‐integer conductance quantization at room temperature during set and reset. Identifying the materials conditions of different switching modes and conductance quantization contributes to a unified switching model correlating structural and functional properties of RRAM materials. The possibility to engineer the oxygen stoichiometry in HfOx will allow creating quantum point contacts with multiple conductance quanta as a first step toward multilevel memristive quantum devices.
Keywords:HfO2  memristors  oxygen stoichiometry  quantum conductance  unified model
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号