首页 | 官方网站   微博 | 高级检索  
     


Device simulation of lead-free CH_3NH_3SnI_3 perovskite solar cells with high efficiency
Affiliation:College of Science, Yanshan University, Qinhuangdao 066004, China
Abstract:The lead-free perovskite solar cells (PSCs) have drawn a great deal of research interest due to the Pb toxicity of the lead halide perovskite. CH3NH3SnI3 is a viable alternative to CH3NH3PbX3, because it has a narrower band gap of 1.3 eV and a wider visible absorption spectrum than the lead halide perovskite. The progress of fabricating tin iodide PSCs with good stability has stimulated the studies of these CH3NH3SnI3 based cells greatly. In the paper, we study the influences of various parameters on the solar cell performance through theoretical analysis and device simulation. It is found in the simulation that the solar cell performance can be improved to some extent by adjusting the doping concentration of the perovskite absorption layer and the electron affinity of the buffer and HTM, while the reduction of the defect density of the perovskite absorption layer significantly improves the cell performance. By further optimizing the parameters of the doping concentration (1.3×1016 cm-3) and the defect density (1×1015 cm-3) of perovskite absorption layer, and the electron affinity of buffer (4.0 eV) and HTM (2.6 eV), we finally obtain some encouraging results of the Jsc of 31.59 mA/cm2, Voc of 0.92 V, FF of 79.99%, and PCE of 23.36%. The results show that the lead-free CH3NH3SnI3 PSC is a potential environmentally friendly solar cell with high efficiency. Improving the Sn2+ stability and reducing the defect density of CH3NH3SnI3 are key issues for the future research, which can be solved by improving the fabrication and encapsulation process of the cell.
Keywords:CH3NH3SnI3  perovskite solar cells  device simulation  high efficiency  
本文献已被 CNKI 等数据库收录!
点击此处可从《中国物理 B》浏览原始摘要信息
点击此处可从《中国物理 B》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号