首页 | 官方网站   微博 | 高级检索  
     


Ultra-thin single-layer transparent geometrical phase gradient metasurface and its application to high-gain circularly-polarized lens antenna
Affiliation:Air and Missile Defense College, Air Force Engineering University, Xi'an 710051, China
Abstract:A new method to design an ultra-thin high-gain circularly-polarized antenna system with high efficiency is proposed based on the geometrical phase gradient metasurface(GPGM).With an accuracy control of the transmission phase and also the high transmission amplitude,the GPGM is capable of manipulating an electromagnetic wave arbitrarily.A focusing transmission lens working at Ku band is well optimized with the F /D of 0.32.A good focusing effect is demonstrated clearly by theoretical calculation and electromagnetic simulation.For further application,an ultra-thin single-layer transmissive lens antenna based on the proposed focusing metasurface operating at 13 GHz is implemented and launched by an original patch antenna from the perspective of high integration,simple structure,and low cost.Numerical and experimental results coincide well,indicating the advantages of the antenna system,such as a high gain of 17.6 d B,the axis ratio better than 2 d B,a high aperture efficiency of 41%,and also a simple fabrication process based on the convenient print circuit board technology.The good performance of the proposed antenna indicates promising applications in portable communication systems.
Keywords:geometrical phase gradient metasurface  circular polarization  lens antenna  
本文献已被 CNKI 等数据库收录!
点击此处可从《中国物理 B》浏览原始摘要信息
点击此处可从《中国物理 B》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号