首页 | 官方网站   微博 | 高级检索  
     


Luminescence Properties and Energy‐Transfer Behavior of a Novel and Color‐Tunable LaMgAl11O19:Tm3+, Dy3+ Phosphor for White Light‐Emitting Diodes
Authors:Xin Min  Minghao Fang  Zhaohui Huang  Yan'gai Liu  Chao Tang  Xiaowen Wu
Affiliation:Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing, China
Abstract:Novel LaMgAl11O19:Tm3+, Dy3+ phosphors were prepared utilizing a high‐temperature solid‐state reaction method. The phase formation, luminescence properties, energy‐transfer mechanism from the Tm3+ to the Dy3+ ions, the thermal stability, and CIE coordinates were investigated. When excited at 359 nm, the LaMgAl11O19: xTm3+ phosphors exhibit strong blue emission bands at 455 nm. After codoping with Dy3+ and excitation at 359 nm, the LaMgAl11O19:0.03Tm3+, yDy3+ phosphors emitted white light consisting of the characteristic emission peaks of Tm3+ and Dy3+. The Dy3+ emission intensity increased with the Dy3+ concentration due to the energy transfer from Tm3+ to Dy3+, and concentration quenching due to the high Dy3+ doping concentration (= 0.1 mol) did not occur. The calculation of the CIE coordinates of the LaMgAl11O19:Tm3+, yDy3+ phosphors revealed the tunability of the emission color from blue to bluish‐white and to white by changing the excitation wavelength and the doping concentration. An energy transfer from Tm3+ to Dy3+ by dipole–dipole interaction was confirmed by the decay curve, lifetime, and energy‐transfer efficiency measurements. When excited at 359 nm, the LaMgAl11O19:Tm3+, Dy3+ phosphor also showed good thermal stability, suggesting that it can be used in white LEDs excited by a GaN‐based ultraviolet LED.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号