首页 | 官方网站   微博 | 高级检索  
     

南京长江大桥铁路层车致振动对公路层维修改造的影响分析
引用本文:熊文,覃忠余,郭建,刘华,宋晓东,叶见曙. 南京长江大桥铁路层车致振动对公路层维修改造的影响分析[J]. 中国公路学报, 2021, 34(7): 246-257. DOI: 10.19721/j.cnki.1001-7372.2021.07.020
作者姓名:熊文  覃忠余  郭建  刘华  宋晓东  叶见曙
作者单位:1. 东南大学 桥梁工程系, 江苏 南京 211189;2. 南京市公共工程建设中心, 江苏 南京 210019;3. 中铁大桥勘测设计院集团有限公司, 湖北 武汉 430056
基金项目:国家自然科学基金项目(52022021,51978160);南京市科技计划项目(201727002)
摘    要:南京长江大桥于1968年建成通车,经过近50年的铁路(约400列次·d-1)、公路(高峰期约10万veh·d-1)运营,公路正桥桥面系破损严重、屡修屡坏,亟需进行全方位性能提升.其中,列车频繁通过所致高频强扰动带来的结构安全是该维修改造的关键技术难题;通过车-桥耦合振动分析得到南京长江大桥维修改造前、中、后各阶段列车动...

关 键 词:桥梁工程  维修改造  疲劳分析  车-桥耦合  南京长江大桥  车致振动
收稿时间:2020-12-06

Influence on Highway Bridge Deck System Reconstruction by Train-passing-railway Induced Vibration of the Nanjing Yangtze River Bridge
XIONG Wen,QIN Zhong-yu,GUO Jian,LIU Hua,SONG Xiao-dong,YE Jian-shu. Influence on Highway Bridge Deck System Reconstruction by Train-passing-railway Induced Vibration of the Nanjing Yangtze River Bridge[J]. China Journal of Highway and Transport, 2021, 34(7): 246-257. DOI: 10.19721/j.cnki.1001-7372.2021.07.020
Authors:XIONG Wen  QIN Zhong-yu  GUO Jian  LIU Hua  SONG Xiao-dong  YE Jian-shu
Affiliation:1. Department of Bridge Engineering, Southeast University, Nanjing 211189, Jiangsu, China;2. Nanjing Construction Center of Public Works, Nanjing 210019, Jiangsu, China;3. China Railway Major Bridge Reconnaissance and Design Institute Co. Ltd., Wuhan 430056, Hubei, China
Abstract:The Nanjing Yangtze River Bridge has been open to the public since 1968, with daily traffic of 400 railway trains and 100 000 highway vehicles. After a 50-year service period, the highway bridge deck system has been damaged several times and requires immediate maintenance and mechanical improvement. Based on the train-bridge coupling analysis, the behaviors of the Nanjing Yangtze River Bridge under the passing train were investigated for different stages-before, during, and after the reconstruction. The reconstruction safety of the structure was evaluated from the viewpoint of vibration. First, a finite element model was established to simulate different reconstruction stages. The accuracy of the dynamic modeling was verified using the vibration test data. Then, using the theory of train-bridge coupling vibration, an analysis platform was programmed using MATLAB and ANSYS software. This program was verified using existing test examples. The time-varying vibration displacement, acceleration, and stress of the truss induced by the passing train were obtained for each reconstruction stage using this program. The fatigue damage and remaining ages were simultaneously calculated. The results showed that the vibration behavior induced by the passing train during the reconstruction is similar to that before and after reconstruction. Lower displacements of the girder were observed after reconstruction. The newly installed orthotropic steel deck with a light density and high strength could improve the dynamic performance of the bridge. The passing train would not influence the structural safety during the reconstruction, and only a small amount of fatigue damage could be induced after the reconstruction with a longer theoretical remaining age than its service stage.
Keywords:bridge engineering  maintenance and reconstruction  fatigue analysis  train-bridge coupling  Nanjing Yangtze river bridge  train-induced vibration  
点击此处可从《中国公路学报》浏览原始摘要信息
点击此处可从《中国公路学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号