活性Whipple结构超高速撞击防护性能实验研究

武强 张庆明 龚自正 任思远 刘海

武强, 张庆明, 龚自正, 任思远, 刘海. 活性Whipple结构超高速撞击防护性能实验研究[J]. 爆炸与冲击, 2021, 41(2): 021406. doi: 10.11883/bzycj-2020-0266
引用本文: 武强, 张庆明, 龚自正, 任思远, 刘海. 活性Whipple结构超高速撞击防护性能实验研究[J]. 爆炸与冲击, 2021, 41(2): 021406. doi: 10.11883/bzycj-2020-0266
WU Qiang, ZHANG Qingming, GONG Zizheng, REN Siyuan, LIU Hai. Experimental investigation into performances of an active Whipple shield against hypervelocity impact[J]. Explosion And Shock Waves, 2021, 41(2): 021406. doi: 10.11883/bzycj-2020-0266
Citation: WU Qiang, ZHANG Qingming, GONG Zizheng, REN Siyuan, LIU Hai. Experimental investigation into performances of an active Whipple shield against hypervelocity impact[J]. Explosion And Shock Waves, 2021, 41(2): 021406. doi: 10.11883/bzycj-2020-0266

活性Whipple结构超高速撞击防护性能实验研究

doi: 10.11883/bzycj-2020-0266
基金项目: 国家自然科学基金(11802034);国防科工局“十三五”碎片专项(KJSP2016030301);中国空气动力研究与发展中心超高速碰撞研究中心开放基金(20200103)
详细信息
    作者简介:

    武 强(1987- ),男,博士,工程师,wuqiang12525@126.com

    通讯作者:

    张庆明(1963- ),男,博士,教授,博士生导师,qmzhang@bit.edu.cn

  • 中图分类号: O389; V414.9

Experimental investigation into performances of an active Whipple shield against hypervelocity impact

  • 摘要: 以二级轻气炮作为加载手段,针对以PTFE/Al活性材料为防护屏的Whipple防护结构,开展不同弹丸尺寸、不同碰撞速度的超高速撞击实验。利用激光阴影照相设备,获得并分析了碎片云特性;通过回收的防护结构靶板,研究了活性材料防护结构超高速撞击条件下的后板损伤特性;通过与经典Christiansen撞击极限方程对比,获得活性材料Whipple结构防护性能,并拟合得到新型防护结构的撞击极限曲线。结果表明,相较于同面密度铝合金材料,活性材料超高速撞击条件下的冲击起爆反应使得碎片云中具有侵彻能力的碎片大幅减少,从而显著提升航天器的防护能力,撞击速度为2.31 km/s时最大可提升45%。
  • 图  1  具有熔融、结晶平台的烧结工艺曲线

    Figure  1.  Sintering process curve with melting and crystal platform

    图  2  Whipple防护结构实验方案

    Figure  2.  Whipple shield configuration

    图  3  弹丸弹托及拦截靶拦截前后对比图

    Figure  3.  Typical sabot and contrast of interception target before and after impact

    图  4  实验1碎片云激光阴影照片(LY-12铝防护屏)

    Figure  4.  Laser shadowgraphs of debris clouds in experiment 1 (LY-12 Al shield)

    图  5  实验2碎片云激光阴影照片(PTFE/Al防护屏)

    Figure  5.  Laser shadowgraphs of debris clouds in experiment 2 (PTFE/Al shield)

    图  6  实验1的防护结构后板损伤(LY-12铝防护屏)

    Figure  6.  Rear wall damage of protective structurein experiment 1 (LY-12 Al shield)

    图  7  实验2的防护结构后板损伤(PTFE/Al防护屏)

    Figure  7.  Rear wall damage of protective structurein experiment 2 (PTFE/Al shield)

    图  8  实验8的防护结构后板损伤(PTFE/Al防护屏)

    Figure  8.  Rear wall damage of protective structurein experiment 8 (PTFE/Al shield)

    图  9  实验9的防护结构后板损伤(PTFE/Al防护屏)

    Figure  9.  Rear wall damage of protective structurein experiment 9 (PTFE/Al shield)

    图  10  实验7后板弹坑环状分布图(PTFE/Al防护屏)

    Figure  10.  Circular distribution of the craters on the rear wallin experiment 7 (PTFE/Al shield)

    图  11  弹坑数目与撞击速度的关系

    Figure  11.  Relationship between impact velocity and crater number

    图  12  活性材料及铝合金Whipple结构撞击极限曲线对比

    Figure  12.  Comparison of ballistic limit curves between active material and aluminum alloy Whipple shileds

    表  1  主要原料参数

    Table  1.   Parameters of raw materials

    原料 规格生产厂家
    聚四氟乙烯 粒径26 μm美国Dupont公司
    铝粉 粒径10 μm,纯度99.9%河南远洋铝业
    高纯氩气 纯度≥99.99%北京亚男伟业
    无水乙醇 纯度≥99.7%北京化工厂
    下载: 导出CSV

    表  2  实验参数及损伤情况

    Table  2.   Hypervelocity impact test configurations and damage results

    实验弹丸参数Whipple防护结构参数后板损伤
    直径/mm质量/g速度/(km·s−1)前板材料面密度/(g·cm−2)后板材料
    16.40.385.06LY-12铝0.84LY-12铝穿孔撕裂
    26.40.385.03PTFE/Al0.84LY-12铝轻微层裂
    35.00.183.79PTFE/Al0.84LY-12铝鼓包
    45.00.183.88PTFE/Al0.84LY-12铝鼓包
    55.00.184.00PTFE/Al0.84LY-12铝鼓包
    66.00.313.71PTFE/Al0.84LY-12铝穿孔
    76.40.386.08PTFE/Al0.84LY-12铝轻微鼓包
    85.00.182.65PTFE/Al0.84LY-12铝鼓包
    96.00.312.31PTFE/Al0.84LY-12铝鼓包
    下载: 导出CSV

    表  3  后板损伤情况统计

    Table  3.   Damage statistics of rear wall

    实验
    编号
    撞击速度/
    (km·s−1
    弹坑数目弹坑总数
    (dc≥2 mm)
    (dc>4 mm)(3 mm≤dc≤4 mm)(2 mm≤dc<3 mm)
    25.036512 23
    33.792204
    43.885038
    54.003317
    76.0806915
    82.651001
    92.311001
    下载: 导出CSV
  • [1] 龚自正, 赵秋艳, 李明, 等. 空间碎片防护研究前沿问题与展望 [J]. 空间碎片研究, 2019, 19(3): 2–13.

    GONG Z Z, ZHAO Q Y, LI M, et al. The frontier problem and prospect of space debris protection research [J]. Space Debris Research, 2019, 19(3): 2–13.
    [2] COUR-PALAIS B G, CREW J L. A multi-shock concept for spacecraft shielding [J]. International Journal of Impact Engineering, 1990, 10: 135–146. DOI: 10.1016/0734-743X(90)90054-Y.
    [3] CHRISTIANSEN E L, KERR J H. Mesh double-bumper shield: a low-weight alternative for spacecraft meteoroid and orbital debris protection [J]. International Journal of Impact Engineering, 1993, 14: 169–180. DOI: 10.1016/0734-743X(93)90018-3.
    [4] CHRISTIANSEN E L, CREWS J L, WILLIAMSEN J E, et al. Enhanced meteoroid and orbital debris shielding [J]. International Journal of Impact Engineering, 1995, 17(1−3): 217–228. DOI: 10.1016/0734-743X(95)99848-L.
    [5] CHRISTIANSEN E L, KERR J H, DE LA FUENTE H M, et al. Flexible and deployable meteoroid/debris shielding for spacecraft [J]. International Journal of Impact Engineering, 1999, 23(11): 125–136. DOI: 10.1016/S0734-743X(99)00068-8.
    [6] 贾古寨, 哈跃, 庞宝君, 等. 玄武岩/Kevlar纤维布填充防护结构撞击极限及损伤特性 [J]. 爆炸与冲击, 2016, 36(4): 433–440. DOI: 10.11883/1001-1455(2016)04-0433-08.

    JIA G Z, HA Y, PANG B J, et al. Ballistic limit and damage properties of basalt/Kevlar stuffed shield [J]. Explosion and Shock Waves, 2016, 36(4): 433–440. DOI: 10.11883/1001-1455(2016)04-0433-08.
    [7] 王应德, 冯春祥, 宋永才, 等. 碳化硅纤维连续化工艺研究 [J]. 宇航材料工艺, 1997(2): 21–25.

    WANG Y D, FENG C X, SONG Y C, et al. Study on process of continuous sic fibers [J]. Aerospace Materials & Technology, 1997(2): 21–25.
    [8] 侯明强, 龚自正, 徐坤博, 等. Al/Mg阻抗梯度材料超高速撞击机理数值仿真研究 [J]. 航天器环境工程, 2013, 30(6): 581–585. DOI: 10.3969/j.issn.1673-1379.2013.06.003.

    HOU M Q, GONG Z Z, XU K B, et al. Numerical study on hypervelocity impact mechanism of Al/Mg wave impedance-grade material [J]. Spacecraft Environment Engineering, 2013, 30(6): 581–585. DOI: 10.3969/j.issn.1673-1379.2013.06.003.
    [9] ZHANG X F, SHI A S, QIAO L, et al. Experimental study on impact-initiated characters of multifunctional energetic structural materials [J]. Journal of Applied Physics, 2013, 113(8): 083508. DOI: 10.1063/1.4793281.
    [10] WANG H, ZHENG Y, YU Q, et al. Impact-induced initiation and energy release behavior of reactive materials [J]. Journal of Applied Physics, 2011, 110(7): 074904. DOI: 10.1063/1.3644974.
    [11] 门建兵, 蒋建伟, 帅俊锋, 等. 复合反应破片爆炸成型与毁伤实验研究 [J]. 北京理工大学学报, 2010, 30(10): 1143–1146. DOI: 10.15918/j.tbit1001-0645.2010.10.007.

    MEN J B, JIANG J W, SHUAI J F, et al. Experimental research on formation and terminal effect of explosively formed compound reactive fragments [J]. Transactions of Beijing Institute of Technology, 2010, 30(10): 1143–1146. DOI: 10.15918/j.tbit1001-0645.2010.10.007.
    [12] 肖艳文, 徐峰悦, 余庆波. 类钢密度活性材料弹丸撞击铝靶行为实验研究 [J]. 兵工学报, 2016, 37(6): 1016–1022. DOI: 10.3969/j.issn.1000-1093.2016.06.007.

    XIAO Y W, XU F Y, YU Q B. Experimental research on behavior of active material projectile with steel-like density impacting aluminum target [J]. Acta Armamentarii, 2016, 37(6): 1016–1022. DOI: 10.3969/j.issn.1000-1093.2016.06.007.
    [13] 徐松林, 阳世清, 张炜, 等. PTFE/A1含能复合物的本构关系 [J]. 爆炸与冲击, 2010, 30(4): 439–444. DOI: 10.11883/1001-1455(2010)04-0439-06.

    XU S L, YANG S Q, ZHANG W, et al. A constitutive relation for a pressed PTFE/A1 energetic composite material [J]. Explosion and Shock Waves, 2010, 30(4): 439–444. DOI: 10.11883/1001-1455(2010)04-0439-06.
    [14] 武强, 张庆明, 龙仁荣, 等. 活性材料防护屏在球形弹丸超高速撞击下的穿孔特性研究 [J]. 兵工学报, 2017, 38(11): 2126–2133. DOI: 10.3969/j.issn.1000-1093.2017.11.007.

    WU Q, ZHANG Q M, LONG R R, et al. Perforation characteristics of energetic material shield induced by hypervelocity impact of spherical projectile [J]. Acta Armamentarii, 2017, 38(11): 2126–2133. DOI: 10.3969/j.issn.1000-1093.2017.11.007.
    [15] 柳森, 谢爱民, 黄洁, 等. 超高速碰撞碎片云的四序列激光阴影照相 [J]. 实验流体力学, 2010, 24(1): 1–5. DOI: 10.3969/j.issn.1672-9897.2010.01.001.

    LIU S, XIE A M, HUANG J, et al. Four sequences laser shadowgraph for the visualization of hypervelocity impact debris cloud [J]. Journal of Experiments in Fluid Mechanics, 2010, 24(1): 1–5. DOI: 10.3969/j.issn.1672-9897.2010.01.001.
    [16] 张庆明, 黄风雷. 超高速碰撞动力学引论[M]. 北京: 科学出版社, 2000: 110−122.
    [17] CHRISTIANSEN E L. Design and performance equations for advanced meteoroid and debris shield [J]. International Journal of Impact Engineering, 1993, 14(6−10): 145–156. DOI: 10.1016/0734-743X(93)90016-Z.
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  868
  • HTML全文浏览量:  295
  • PDF下载量:  111
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-04
  • 修回日期:  2020-10-21
  • 网络出版日期:  2021-02-02
  • 刊出日期:  2021-02-05

目录

    /

    返回文章
    返回