主管部门: 中国航天科技集团有限公司
主办单位: 中国航天空气动力技术研究院
中国宇航学会
中国宇航出版有限责任公司

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Arnoldi方法简述及其在流动稳定性中的应用

李武庸 涂国华 陈曦

李武庸, 涂国华, 陈曦. Arnoldi方法简述及其在流动稳定性中的应用[J]. 气体物理, 2022, 7(5): 16-28. doi: 10.19527/j.cnki.2096-1642.0958
引用本文: 李武庸, 涂国华, 陈曦. Arnoldi方法简述及其在流动稳定性中的应用[J]. 气体物理, 2022, 7(5): 16-28. doi: 10.19527/j.cnki.2096-1642.0958
LI Wu-yong, TU Guo-hua, CHEN Xi. Arnoldi Method and Its Application in Flow Stability Problem[J]. PHYSICS OF GASES, 2022, 7(5): 16-28. doi: 10.19527/j.cnki.2096-1642.0958
Citation: LI Wu-yong, TU Guo-hua, CHEN Xi. Arnoldi Method and Its Application in Flow Stability Problem[J]. PHYSICS OF GASES, 2022, 7(5): 16-28. doi: 10.19527/j.cnki.2096-1642.0958

Arnoldi方法简述及其在流动稳定性中的应用

doi: 10.19527/j.cnki.2096-1642.0958
基金项目: 

国家重点研发计划 2016YFA0401200

国家数值风洞工程 2018-ZT1A03

详细信息
    作者简介:

    李武庸(1996-) 男, 硕士, 研究方向为数值计算。E-mail: wuyong2019@mail.ynu.edu.cn

    通讯作者:

    陈曦(1989-) 男,博士,助理研究员,主要研究方向为边界层转捩。E-mail: chenxicoe@pku.edu.cn

  • 中图分类号: O302;O355

Arnoldi Method and Its Application in Flow Stability Problem

  • 摘要: 流动稳定性问题常常归结于巨型非对称矩阵特征值问题。多数求解巨型非对称矩阵特征问题的算法均是经基本的Arnoldi算法演化而来。首先简述基本的Arnoldi算法; 其次简述基于Arnoldi算法的几类变体, 如显式重启Arnoldi算法,隐式重启Arnoldi算法与多重隐式重启Arnoldi算法; 最后基于Arnoldi算法及其变体结合谱位移技术求解计算流动稳定性问题, 并通过数值实验比较可知结合谱位移技术的多重隐式重启Arnoldi算法的求解效率最高。

     

  • 图  1  显式重启Arnoldi算法流程图

    Figure  1.  Flow chart of explicitly restarted Arnoldi algorithm

    图  2  隐式重启Arnoldi算法流程图

    Figure  2.  Flow chart of implicitly restarted Arnoldi algorithm

    图  3  多重隐式重启Arnoldi算法流程图

    Figure  3.  Flow chart of multiple implicitly restarted Arnoldi algorithm

    图  4  给定谱位移参数σ=0.3情形下3种不同的Arnoldi方法求解的Poiseuille流扰动特征值问题的特征谱

    Figure  4.  Characteristic spectra of three different Arnoldi methods for solving the perturbation eigenvalue problem of poiseuille flow at the spectral displacement parameter σ=0.3

    图  5  3种不同的Arnoldi方法求解的Poiseuill流扰动特征值问题所对应的残差

    Figure  5.  Residual corresponding to the perturbation eigenvalue problem of poiseuille flow solved by three different Arnoldi methods

    图  6  不同谱位移参数σ=0.1~0.9情形下多重隐式重启Arnoldi方法得到的特征谱

    Figure  6.  Characteristic spectra obtained by multiple implicitly restarted Arnoldi method under different spectral displacement parameters σ=0.1~0.9

    图  7  3种方法分别求解Ma=2.5高超声速边界层稳定性与函数eig的比较

    Figure  7.  Comparison of three methods for solving hypersonic boundary layer stability at Ma=2.5 with function eig

    图  8  Ma=6高超声速6°攻角圆锥边界层背风流向涡不稳定模态特征函数分布

    Figure  8.  Characteristic function distribution of unstable modes of vortices in the leeward side of conical boundary layer at 6° angle of attack and hypersonic speed Ma=6

    表  1  3种方法求解不可压缩二维流动比较

    Table  1.   Comparison of three methods for solving two-dimensional incompressible flow

    methods CPU/s ITE m
    restarted Arnoldi * * 25
    implicitly restarted Arnoldi 0.445 065 35 25
    multiple implicitly restarted Arnoldi 0.218 831 1 29
    下载: 导出CSV

    表  2  3种方法分别求解来流Ma=2.5的平板边界层流动比较

    Table  2.   Comparison of three methods for solving the boundary layer on a flat plate at incoming Mach number Ma=2.5

    methods CPU ITE m
    restarted Arnoldi 25.386 330 s 56 50
    implicitly restarted Arnoldi 11.892 779 s 5 50
    multiple implicitly restarted Arnoldi 11.434 565 s 1 52
    下载: 导出CSV

    表  3  3种方法求解不可压缩二维流动比较

    Table  3.   Comparison of three methods for solving two-dimensional incompressible flow

    methods CPU/s ITE m E
    restarted Arnoldi 186.418 92 2 50 0.050 060 74-0.003 5251i
    implicitly restarted Arnoldi 513.948 11 1 50 0.048 060 73-0.003 466 2i
    multiple implicitly restarted Arnoldi 137.648 17 1 55 0.049 090 03-0.003 381 3i
    下载: 导出CSV
  • [1] Wilkinson J H. 代数特征值问题[M]. 石钟慈, 邓健新, 译. 北京: 科学出版社, 1987.

    Wilkinson J H. Algebraic eigenvalue problem[M]. Shi Z C, Deng J X, trans. Beijing: Science Press, 1987(in Chinese).
    [2] Golub G H, van Loan C F. Matrix computations[M]. 3rd ed. Baltimore: The Johns Hopkins University Press, 1996.
    [3] Parlett B N, Poole Jr W G. A geometric theory for the QR, LU and power iterations[J]. SIAM Journal on Numerical Analysis, 1973, 10(2): 389-412. doi: 10.1137/0710035
    [4] Ford W. The algebraic eigenvalue problem[A]. Ford W. Numerical Linear Algebra with Applications[M]. San Diego, CA: Academic Press, 2015: 379-438.
    [5] Clint M, Jennings A. A simultaneous iteration method for the unsymmetric eigenvalue problem[J]. IMA Journal of Applied Mathematics, 1971, 8(1): 111-121. doi: 10.1093/imamat/8.1.111
    [6] Clint M, Jennings A. The evaluation of eigenvalues and eigenvectors of real symmetric matrices by simultaneous iteration[J]. The Computer Journal, 1970, 13(1): 76-80. doi: 10.1093/comjnl/13.1.76
    [7] Cullum J, Willoughby R A, Lake M. A lanczos algorithm for computing singular values and vectors of large matrices[J]. SIAM Journal on Scientific and Statistical Computing, 1983, 4(2): 197-215. doi: 10.1137/0904015
    [8] Lanczos C. An iteration method for the solution of the eigenvalue problem of linear differential and integral operators[J]. Journal of Research of the National Bureau of Standards, 1950, 45(4): 255-282. doi: 10.6028/jres.045.026
    [9] Parlett B N. The symmetric eigenvalue problem[J]. Society for Industrial and Applied Mathematics, 1980, 348: 1-13.
    [10] Parlett B N, Scott D S. The Lanczos algorithm with selective orthogonalization[J]. Mathematics of Computation, 1979, 33(145): 217-238. doi: 10.1090/S0025-5718-1979-0514820-3
    [11] Hirao K, Nakatsuji H. A generalization of the Davidson's method to large nonsymmetric eigenvalue problems[J]. Journal of Computational Physics, 1982, 45(2): 246-254. doi: 10.1016/0021-9991(82)90119-X
    [12] Morgan R B, Scott D S. Generalizations of Davidson's method for computing eigenvalues of sparse symmetric matrices[J]. SIAM Journal on Scientific and Statistical Computing, 1986, 7(3): 817-825. doi: 10.1137/0907054
    [13] Crouzeix M, Philippe B, Sadkane M. The Davidson method[J]. SIAM Journal on Scientific Computing, 1994, 15(1): 62-76. doi: 10.1137/0915004
    [14] Arnoldi W E. The principle of minimized iterations in the solution of the matrix eigenvalue problem[J]. Quarterly of Applied Mathematics, 1951, 9(1): 17-29. doi: 10.1090/qam/42792
    [15] Jia Z X. Refined iterative algorithms based on Arnoldi's process for large unsymmetric eigenproblems[J]. Linear Algebra and its Applications, 1997, 259: 1-23. doi: 10.1016/S0024-3795(96)00238-8
    [16] 吕良福. 求解大型特征值问题的块Davidson方法的精化和收缩技术[D]. 南京: 南京航空航天大学, 2004.

    Lyu L F. Refining-strategy and deflation technique of block Davidson method for solving large sparse eigenproblems[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2004(in Chinese).
    [17] 吕良福, 戴华. 求解大型特征值问题的块Davidson方法的精化技术[J]. 黑龙江大学自然科学学报, 2006, 23(1): 100-104. doi: 10.3969/j.issn.1001-7011.2006.01.023

    Lyu L F, Dai H. Refining-strategy of block Davidson method for solving large sparse eigenproblems[J]. Journal of natural science of Heilongjiang University, 2006, 23 (1): 100-104(in Chinese). doi: 10.3969/j.issn.1001-7011.2006.01.023
    [18] Bai Z J, Day D, Demmel J, et al. A test matrix collection for non-hermitian eigenvalue problems (Release 1.0)[R]. Technical Report CS-97-355, 1997.
    [19] Kerner W. Large-scale complex eigenvalue problems[J]. Journal of Computational Physics, 1989, 85(1): 1-85. doi: 10.1016/0021-9991(89)90200-3
    [20] Saad Y. Krylov subspace methods for solving large unsymmetric linear systems[J]. Mathematics of Computation, 1981, 37(155): 105-126 doi: 10.1090/S0025-5718-1981-0616364-6
    [21] Karush W. An iterative method for finding characteristic vectors of a symmetric matrix[J]. Pacific Journal of Mathematics, 1951, 1(2): 233-248. doi: 10.2140/pjm.1951.1.233
    [22] Saad Y. Variations on Arnoldi's method for computing eigenelements of large unsymmetric matrices[J]. Linear Algebra and its Applications, 1980, 34: 269-295. doi: 10.1016/0024-3795(80)90169-X
    [23] Saad Y. Projection methods for solving large sparse eigenvalue problems[A]. Kágström B, Ruhe A. Matrix Pencils. Proceedings of A Conference Held at Pite Havsbad[M]. Sweden: Springer, 1983, 973: 121-144.
    [24] Saad Y. Chebyshev acceleration techniques for solving nonsymmetric eigenvalue problems[J]. Mathematics of Computation, 1984, 42(166): 567-588. doi: 10.1090/S0025-5718-1984-0736453-8
    [25] Cullum J, Donath W E. A block Lanczos algorithm for computing the Q algebraically largest eigenvalues and a corresponding eigenspace of large, sparse, real symmetric matrices[C]. IEEE Conference on Decision and Control Including the Symposium on Adaptive Processes. Phoenix, Arizona: IEEE, 1974.
    [26] Cullum J. The simultaneous computation of a few of the algebraically largest and smallest eigenvalues of a large, sparse, symmetric matrix[J]. Bit Numerical Mathematics, 1978, 18(3): 265-275. doi: 10.1007/BF01930896
    [27] Ho D. Tchebychev acceleration technique for large scale nonsymmetric matrices[J]. Numerische Mathematik, 1989, 56(7): 721-734. doi: 10.1007/BF01405199
    [28] Sadkane M. A block Arnoldi-Chebyshev method for computing the leading eigenpairs of large sparse unsymmetric matrices[J]. Numerische Mathematik, 1993, 64(1): 181-193. doi: 10.1007/BF01388686
    [29] Jia Z X. The convergence of generalized lanczos methods for large unsymmetric eigenproblems[J]. SIAM Journal on Matrix Analysis and Applications, 1995, 16(3): 843-862. doi: 10.1137/S0895479893246753
    [30] Jia Z X. A refined iterative algorithms based on the block Arnoldi process for large unsymmetric eigenproblems[J]. Linear Algebra & Its Applications, 1998, 270: 171-189.
    [31] Jia Z X. Polynomial characterizations of the approximate eigenvectors by the refined Arnoldi method and an implicitly restarted refined Arnoldi algorithm[J]. Linear Algebra and its Applications, 1999, 287(1/3): 191-214.
    [32] 曹陶桃. 求解大型非对称矩阵特征问题的精化Arnoldi-Chebyshev方法[D]. 南京: 南京航空航天大学, 2006.

    Cao T T. Refined Arnoldi-Chebyshev method for large unsymmetric eigenproblems[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2006(in Chinese).
    [33] Sorensen D C. Implicit application of polynomial filters in a K-step Arnoldi method[J]. SIAM Journal on Matrix Analysis and Applications, 1992, 13(1): 357-385. doi: 10.1137/0613025
    [34] Fazeli S A S, Emad N, Liu Z F. A key to choose subspace size in implicitly restarted Arnoldi method[J]. Numerical Algorithms, 2015, 70(2): 407-426. doi: 10.1007/s11075-014-9954-5
    [35] Lehoucq R B, Sorensen D C. Deflation techniques for an implicitly restarted Arnoldi iteration[J]. SIAM Journal on Matrix Analysis and Applications, 1996, 17(4): 789-821. doi: 10.1137/S0895479895281484
    [36] Emad N, Petiton S G, Edjlali G. Multiple explicitly restarted Arnoldi method for solving large eigenproblems[J]. SIAM Journal on Scientific Computing, 2005, 27(1): 253-277. doi: 10.1137/S1064827500366082
    [37] Fender A, Emad N, Petiton S, et al. Leveraging accelerators in the multiple implicitly restarted Arnoldi method with nested subspaces[C]. IEEE International Conference on Emerging Technologies and Innovative Business Practices for the Transformation of Societies. Balaclava, Mauritius: IEEE, 2016.
    [38] Liu Z F, Emad N, Amor S B, et al. PageRank computation using a multiple implicitly restarted Arnoldi method for modeling epidemic spread[J]. International Journal of Parallel Programming, 2015, 43(6): 1028-1053. doi: 10.1007/s10766-014-0344-3
    [39] Golub G H, Greif C. An Arnoldi-type algorithm for computing page rank[J]. BIT Numerical Mathematics, 2006, 46(4): 759-771. doi: 10.1007/s10543-006-0091-y
    [40] Theofilis V. Advances in global linear instability analysis of nonparallel and three-dimensional flows[J]. Progress in Aerospace Sciences, 2003, 39(4): 249-315. doi: 10.1016/S0376-0421(02)00030-1
    [41] Theofilis V. Global linear instability[J]. Annual Review of Fluid Mechanics, 2011, 43(1): 319-352. doi: 10.1146/annurev-fluid-122109-160705
    [42] Pedro P G. Advances in global instability computations: from incompressible to hypersonic flow[D]. Madrid: Universidad Politécnica de Madrid, 2014.
    [43] 赵磊. 高超声速后掠钝板边界层横流定常涡失稳的研究[D]. 天津: 天津大学, 2016.

    Zhao L. Study on instability of stationary crossfrow vortices in hypersonic Swept blunt plate boundary layer[D]. Tianjin: Tianjin University, 2016(in Chinese).
    [44] 郗有成. 基于全局稳定性分析的高速边界层感受性与稳定性研究[D]. 北京: 清华大学, 2021.

    Chi Y C. Study on sensitivity and stability of high-speed boundary layer based on global stability analysis[D]. Beijing: Tsinghua University, 2021(in Chinese).
    [45] Loiseau J C, Bucci M A, Cherubini S, et al. Time-stepping and Krylov methods for large-scale instability problems[J]. Arxiv, 2018, 50: 53-73.
    [46] Ruhe A. Rational Krylov algorithms for nonsymmetric eigenvalue problems. Ⅱ. matrix pairs[J]. Linear Algebra and its Applications, 1994, 197-198: 283-295. doi: 10.1016/0024-3795(94)90492-8
    [47] Morgan R B, Zeng M. Harmonic projection methods for large non-symmetric eigenvalue problems[J]. Numerical Linear Algebra with Applications, 1998, 5(1): 33-55. doi: 10.1002/(SICI)1099-1506(199801/02)5:1<33::AID-NLA125>3.0.CO;2-1
    [48] Schmid P J, Henningson D S. Stability and transition in shear flows[M]. World Publishing Corporation, 2014.
    [49] Dubois J, Calvin C, Petiton S G. Accelerating the explicitly restarted Arnoldi method with GPUs using an autotuned matrix vector product[J]. SIAM Journal on Scientific Computing, 2011, 33(5): 3010-3019. doi: 10.1137/10079906X
    [50] Braman K, Byers A, Mathias R. The multishift QR algorithm. Part Ⅰ: maintaining well-focused shifts and level 3 performance[J]. SIAM Journal on Matrix Analysis and Applications, 2002, 23(4): 929-947. doi: 10.1137/S0895479801384573
    [51] Stathopoulos A, Saad Y, Wu K S. Dynamic thick restarting of the Davidson, and the implicitly restarted Arnoldi methods[J]. SIAM Journal on Scientific Computing, 1998, 19(1): 227-245. doi: 10.1137/S1064827596304162
    [52] Malik M R. Numerical methods for hypersonic boundary layer stability[J]. Journal of Computational Physics, 1990, 86(2): 376-413. doi: 10.1016/0021-9991(90)90106-B
    [53] Lehoucq R B, Sorensen D C, Yang C. ARPACK users' guide: solution of large scale eigenvalue problems with implicitly restarted Arnoldi methods[J]. DBLP, 1998, 28: 67-77.
    [54] 曹志浩. 矩阵特征值问题[M]. 上海: 上海科学技术出版社, 1980.

    Cao Z H. Matrix eigenvalue problem[M]. Shanghai: Science and Technology Press, 1980(in Chinese).
    [55] Tezuka A, Suzuki K. Three-dimensional global linear stability analysis of flow around a spheroid[J]. AIAA Journal, 2006, 44(8): 1697-1708. doi: 10.2514/1.16632
    [56] 陈曦. 高超声速边界层转捩问题研究[D]. 北京: 北京大学, 2018.

    Chen X. Research on hypersonic boundary layer transition[D]. Beijing: Peking University, 2018(in Chinese).
    [57] 陈曦, 陈坚强, 董思卫, 等. 高超声速6°迎角圆锥边界层背风流向涡稳定性分析[J]. 空气动力学学报, 2020, 38(2): 299-307. https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX202002013.htm

    Chen X, Chen J Q, Dong S W, et al. Stability analyses of leeward streamwise vortices for a hypersonic yawed cone at 6 degree angle of attack[J]. Journal of aerodynamics, 2020, 38 (2): 299-307(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX202002013.htm
    [58] Schmid P J, Henningson D S. Stability and transition in shear flows[M]. New York: Springer Verlag, 2014.
    [59] Malik M R. Numerical methods for hypersonic boundary layer stability[J]. Journal of Computational Physics, 1990, 86(2): 376-413. doi: 10.1016/0021-9991(90)90106-B
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  173
  • HTML全文浏览量:  54
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-11
  • 修回日期:  2021-11-15

目录

    /

    返回文章
    返回