首页 | 官方网站   微博 | 高级检索  
     


Carbonate cement fabrics displayed: A traverse across the margin of the Bahamas Platform near Lee Stocking Island in the Exuma Cays
Authors:Gregory L Whittle  Christopher GStC Kendall  Robert F Dill  Linda Rouch
Affiliation:

University of South Carolina, Department of Geological Sciences, Columbia, SC 29208, USA

Abstract:Consolidated to friable carbonate rocks found in the Lee Stocking Island area in the Exuma Cays include: (1) reef rock, (2) channel stromatolites, (3) shallow-water hardgrounds, (4) beachrock rimming the islands and (5) Pleistocene bedrock.

The most common cement fabrics observed are: aragonitic fibers, which include acicular fan-druse and square-tipped coarse fibers cementing beachrock and stromatolites; and an isopachous needle-fiber rim cementing hardgrounds and stromatolites.

Less common are high-Mg calcite bladed textures of the reef rock and stromatolites. Two types of blades are present: the more common stubby variety of either high-Mg or low-Mg calcite, and an elongated variety of high-Mg calcite which was found in only three beachrock samples.

Aragonitic micrite envelopes usually surround grains in beachrock, hardgrounds and stromatolites, but only in association with fibrous cement. An aragonitic crust cements the surfaces of lime mud beds of the tidal channel, while a high-Mg calcite cryptocrystalline cement occurs in all the rock types. Calcified algal filaments of high-Mg calcite, from the abundant green and blue-green algae in the area, are a primary cement in stromatolites and a secondary cement in hardgrounds and beachrock. A low-Mg calcite equant spar cements the Pleistocene samples and is associated with meteoric diagenesis and cementation of the Pleistocene surface.

Cement precipitation coincides with the path of the cool oceanic water from Exuma Sound as it warms and loses CO2 and moves up onto the bank near Lee Stocking with the incoming tide. Cryptocrystalline cement is the first and commonest cement forming to the seaward while platformward, fibrous cements become predominant. As suggested by their crystal size and location on the shelf margin, we think that the reef rock cryptocrystalline material are the fastest forming of the cements, where the incoming oceanic water is more saturated with respect to calcium carbonate and undergoes the most significant warming. The rate of the warming and degassing process is thought to increase in the tidal channel though the cementation rate is thought to fall slightly in response to a reduced availability of calcium carbonate. On the platform interior further warming and degassing are believed to cause cement precipitation and the development of hardgrounds, but these may form at a slower rate than that of the margin, though this rate is still quite high. Cementation gradients occur from the tidal channel to the intertidal zones of: (1) west Norman's Pond Cay, where cement fabric suggests a reduced calcium carbonate availability, and (2) west Lee Stocking Island, where a change in mineralogy suggests a change in water chemistry.

Thus, a sequence of cement fabrics and mineralogies can be traced. Micritic textures occur in a more seaward position; fine, fibrous aragonite fibers in a more lagoonal and levee position; and coarser aragonite fibers and Mg-calcite cements in the intertidal and supratidal position. This sequence is thought to track the evolution of the water mass.

Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号