首页 | 官方网站   微博 | 高级检索  
     


Dominant Modes of Interannual Variability in Atmospheric Water Vapor Content over East Asia during Winter and Their Associated Mechanisms
Authors:Wenyue HE  Bo SUN  Huijun WANG
Affiliation:Nansen-Zhu International Research Centre,Institute of Atmospheric Physics, Chinese Academy of Sciences,Beijing 100029,China;University of Chinese Academy of Sciences,Beijing 100049,China;Nansen-Zhu International Research Centre,Institute of Atmospheric Physics, Chinese Academy of Sciences,Beijing 100029,China;Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters/Key Laboratory of Meteorological Disaster,Ministry of Education,Nanjing University of Information Science and Technology,Nanjing 210044,China;Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai),Zhuhai 519080,China
Abstract:Atmospheric water vapor content(WVC) is a critical factor for East Asian winter precipitation. This study investigates the dominant modes of interannual variability in WVC over East Asia during winter and their underlying mechanisms.Based on the empirical orthogonal function(EOF) method, the leading mode(EOF1, R~2 = 28.9%) of the interannual variability in the East Asian winter WVC exhibits a meridional dipole pattern characterized by opposite WVC anomalies over northeastern China and eastern China; the second mode(EOF2, R~2 = 24.3%) of the interannual variability in the East Asian winter WVC exhibits a monopole pattern characterized by consistent WVC anomalies over eastern China. EOF1 is mainly modulated by two anomalous zonal water vapor transport(WVT) branches over northeastern China and eastern China, which are associated with an anomalous atmospheric wave train over Eurasia affected by sea ice cover in the Kara Sea-Barents Sea(SIC-KSBS) area in the preceding October-November(ON). EOF2 is mainly modulated by an anomalous westerly WVT branch over eastern China, which is associated with a circumglobal atmospheric zonal wave train in the Northern Hemisphere. This circumglobal zonal wave train is modulated by concurrent central and eastern tropical Pacific sea surface temperature anomalies. The SIC-KSBS anomalies in ON and the concurrent SST anomalies over tropical Pacific may partially account for the interannual variability of EOF1 and EOF2 winter WVC, and thus may provide a theoretical basis for improving the prediction of winter climate over East Asia.
Keywords:interannual variability leading modes water vapor content East Asia
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《大气科学进展》浏览原始摘要信息
点击此处可从《大气科学进展》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号