首页 | 官方网站   微博 | 高级检索  
     

滇西龙陵地区地壳电性结构及其对大瑞铁路地质选线影响研究
引用本文:余年,胡祥云,李坚,赵宁,周军,蔡学林,刘云.滇西龙陵地区地壳电性结构及其对大瑞铁路地质选线影响研究[J].地球物理学报,2017,60(6):2442-2455.
作者姓名:余年  胡祥云  李坚  赵宁  周军  蔡学林  刘云
作者单位:1. 重庆大学电气工程学院, 重庆 400044;2. 中国地质大学(武汉)地球物理与空间信息学院, 武汉 430074;3. 中铁二院工程集团有限责任公司, 成都 610031;4. 河南理工大学物理与电子信息学院, 河南焦作 454000;5. 成都理工大学"地球勘探与信息技术"教育部重点实验室, 成都 610059
基金项目:国家自然科学基金(41504061,41274078,41604112)、国家重点研发计划专项项目(2016YFC0600302)和中国博士后科学基金(2014M562088)联合资助.
摘    要:高黎贡山地处印度板块与欧亚板块碰撞缝合带附近的横断山脉南段,是大理一瑞丽铁路(大瑞线)的必经之地,地形起伏大、构造复杂、活动性强,高黎贡山隧道作为全线控制性工程之一,其地质选线的最大困难就是对隧道深部构造环境的了解,特别是缺少对与地热、地震等联系紧密的深部地质构造的认识.为此,本文以大地电磁方法为手段,以高黎贡山隧道为主要研究对象,通过对滇西龙陵地区高黎贡山隧道越岭段两条大地电磁剖面数据的处理解释对研究区的地壳电性结构特征进行了勘探研究.结合区域地质构造特征与主要工程地质问题之间关系的分析,根据隧道主要断层地质条件设计了三维垂直断层模型,利用三维有限元开展正演模拟研究发现,测点点距、位置与横向分辨率密切相关,点距越密,分辨率越高,测点位于断层在地表投影位置能有效提高分辨率.采用大地电磁阻抗张量分解技术对两条剖面上各测点的二维偏离度和电性走向进行了计算和分析,对剖面视电阻率和阻抗相位数据进行了二维NLCG联合反演研究,揭示了沿剖面的腾冲地块、龙陵一瑞丽断裂带及保山地块10 km深度的电性结构特征及相互关系.结果表明:剖面CD电性结构呈现区域构造的三分性,腾冲地块电性结构成层性较好,保山地块成层性较差,两者均以中高阻电性特征为主,中间夹龙陵一瑞丽断裂带,电性结构反映从3 km深度以下存在几乎近于直立延伸的低阻带,推测为班公湖一怒江缝合带滇西段丁青一怒江缝合带的反映;剖面AB共划分了6条与工程密切相关的深部隐伏断裂,结合地震地质、地表地质及龙陵地震深部背景研究,推测F7-3断裂为1975龙陵7.3级地震断裂;从地表黄草坝断裂开始向下延伸,有一条发育最大深度约为4 km的低阻通道,推测为地热断裂深循环通道,其与黄草坝断裂共同控制研究区地下热水的补给、径流和排泄条件,在高黎贡山隧道线位位置形成了一个相对低温通道,为隧道方案成立的关键工程地质条件.勘探结果表明:滇西龙陵地区地壳电性结构有效的反映了高黎贡山隧道深部隐伏断裂和地热断裂深循环通道等深部构造特征,为大瑞线隧道工程地质选线提供了深部地质背景依据.

关 键 词:大地电磁测深  高黎贡山  地热  碰撞缝合带  断裂深循环  地质选线  
收稿时间:2016-08-04

Electrical structure of the Longling area in western Yunnan and its effect on route selection of the Dali-Ruili railway
YU Nian,HU Xiang-Yun,LI Jian,ZHAO Ning,ZHOU Jun,CAI Xue-Lin,LIU Yun.Electrical structure of the Longling area in western Yunnan and its effect on route selection of the Dali-Ruili railway[J].Chinese Journal of Geophysics,2017,60(6):2442-2455.
Authors:YU Nian  HU Xiang-Yun  LI Jian  ZHAO Ning  ZHOU Jun  CAI Xue-Lin  LIU Yun
Affiliation:1. School of Electrical Engineering, Chongqing University, Chongqing 400044, China;2. Institute of Geophysics and Geomatics, China University of Geosciences, Wuhan 430074, China;3. China Railway Eryuan Engineering Group CO.LTD, Chengdu 610031, China;4. Department of Physics and Electronic Information, Henan Polytechnic University, Henan Jiaozuo 454000, China;5. Key Laboratory of Earth Exploration and Information Techniques of MOE, Chengdu University of Technology, Chengdu 610059, China
Abstract:The Gaoligong Mountains, where the Dali-Ruili railway will pass through, is located in the southern section of the Hengduan Range near the collision suture zone between the India and Eurasian plates, featured by large terrain relief, complex structure and strong activity. The Gaoligongshan tunnel is one of the key projects, for which the biggest difficulty in geological route selection is how to understand the deep tectonic environment. Especially it lacks knowledge on the deep geological structure related to the geothermics, earthquakes and so on. This paper takes the Gaoligongshan tunnel as the main research object, by processing, interpreting and inverting the magnetotelluric (MT) data along the Gaoligong Mountain zone, to probe the deep electrical structure below the Gaoligongshan tunnel. A 3D vertical fault model is constructed according to the geological conditions around the tunnel, which is also based on the analysis of the relationship between the regional geological structure and the main engineering geological problems. The 3D finite element forward modeling results show that the lateral resolution is related to the distance and position of survey points, the closer distance leading to higher resolution. And the resolution can be enhanced when the survey points coincide with the projection locations of the fault on the surface. Data processing and analysis include calculation of the electric strike and 2D skewness of the area using MT phase vector decomposition and NICG 2D inversion of apparent resistivity and phase data, which reveals the electrical structure above 10 km depth of the Tengchong block, Longling-Ruili structure zone and Baoshan block and the relationship between them. The results show that the electrical structure of the profile CD can be divided into three parts. The electrical structure of the Tengchong block is bedded better than Baoshan, both of which are characterized by high resistivity. Below 3 km depth of the Longling-Ruili structural zone between the two blocks is a low resistivity belt nearly vertically extending below 3km, likely reflecting the Dingqing-Nujiang collision suture zone in western Yunnan. The six deep buried faults closely related to the engineering are explained by the profile AB, and it is inferred that the fault F7-3 is responsible for the 1975 Longling MS7.3 earthquake according to the seismic geology, surface geology and deep background. There is a low resistance channel with maximum depth of about 4 km which begins from the Huangcaoba fault on the surface and extends downward, probably controlling the deep-circulation channel of geothermal together with the Huangcaoba fault, which is considered to be the important engineering geological condition for the Gaoligongshan tunnel scheme, forming a relatively low-temperature channel at the position of the line. In sum, the exploration results show that the electrical structure of the Longling area in western Yunnan reveals the characteristics of deep buried faults and the fractured deep-circulation channel of geothermal of the Gaoligongshan tunnel, which provides the evidence of deep geological background for the route selection of the engineering project.
Keywords:Magnetotelluric sounding  Gaoligong mountains  Geothermal  Collision suture zone  Fracture deep-circulation  Geological route selection
本文献已被 CNKI 等数据库收录!
点击此处可从《地球物理学报》浏览原始摘要信息
点击此处可从《地球物理学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号