首页 | 官方网站   微博 | 高级检索  
     


Physiologically based pharmacokinetic modeling of the lactating rat and nursing pup: a multiroute exposure model for trichloroethylene and its metabolite, trichloroacetic acid
Authors:J W Fisher  T A Whittaker  D H Taylor  H J Clewell  M E Andersen
Affiliation:Toxic Hazards Division, Harry G. Armstrong Aerospace Medical Research Laboratory, Wright-Patterson Air Force Base 45433-6573.
Abstract:A physiologically based pharmacokinetic (PB-PK) model was developed to describe trichloroethylene (TCE) kinetics in the lactating rat and nursing pup. The lactating dam was exposed to TCE either by inhalation or by ingestion in drinking water. The nursing pup's exposure to TCE was by ingestion of maternal milk containing TCE. The kinetics of trichloroacetic acid (TCA), a metabolite of TCE, were described in the lactating dam and developing pup by a hybrid one-compartment model. The lactating dam's exposure to TCA was from metabolism of TCE to TCA. The pup's exposure to TCA was from metabolism of TCE ingested in suckled milk and from direct ingestion of TCA in maternal milk. For the PB-PK model, partition coefficients (PCs) were determined by vial equilibration, and metabolic constants for TCE oxidation, by gas uptake methods. The blood/air and the fat/blood PCs for the dam were 13.1 and 34.2, and for the pup, 10.6 and 42.3, respectively. The milk/blood PC for the dam was 7.1. In lactating rats and rat pups (19-21 days old) the maximum velocities of oxidative metabolism were 9.26 +/- 0.073 and 12.94 +/- 0.107 mg/kg/hr. The plasma elimination rate constant (K = 0.063 +/- 0.004 hr-1) and apparent volume of distribution (Vd = 0.568 liter/kg) for TCA in the lactating dam were estimated from both intravenous dosing studies and an inhalation study with TCE. For the pup, K (0.014 +/- hr-1) and Vd (0.511 liter/kg) were estimated from a single 4-hr inhalation exposure with TCE. The dose-rate-dependent stoichiometric yield of TCA from oxidative metabolism of TCE in the lactating rat is 0.17 for a low-concentration inhalation exposure (27 ppm TCE) and 0.27 for an exposure above metabolic saturation (about 600 ppm TCE). For the pup, the stoichiometric yield of TCA is 0.12. With changing physiological values during lactation for compartmental volumes, blood flows, and milk yields obtained from the published literature and kinetic parameters and PCs determined by experimentation, a PB-PK model was constructed to predict maternal and pup concentrations of TCE and TCA. To test the fidelity of the PB-PK lactation model, a multiday inhalation exposure study was conducted from Days 3 to 14 of lactation and a drinking water study, from Days 3 to 21 of lactation. The inhalation exposure was 4 hr/day, 5 days/week, at 610 ppm. The TCE concentration in the drinking water was 333 micrograms/ml. Prediction compared favorably with limited data obtained at restricted time points during the period of lactation.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号