首页 | 官方网站   微博 | 高级检索  
     

基于光学成像屈光补偿技术对视网膜屈光状态测量方法的研究
引用本文:田佳鑫,魏士飞,李仕明,刘含若,张青,崔焱,郭静云,黄叶权,冬雪川,王宁利.基于光学成像屈光补偿技术对视网膜屈光状态测量方法的研究[J].中华眼科医学杂志(电子版),2020,10(3):135-140.
作者姓名:田佳鑫  魏士飞  李仕明  刘含若  张青  崔焱  郭静云  黄叶权  冬雪川  王宁利
作者单位:1. 100730 首都医科大学附属北京同仁医院 北京同仁眼科中心 北京市眼科研究所 北京市眼科学与视觉科学重点实验室;100191 北京大数据精准医疗高精尖创新中心(北京航空航天大学与首都医科大学眼科学院联合组建) 2. 100176 北京尼莫眼科技术研究院
基金项目:北京市属医学科研院所公益发展改革试点项目(京医研2016-5)
摘    要:目的探讨采用光学成像屈光补偿技术测量人眼视网膜屈光状态的可行性。 方法利用基于屈光补偿进行视网膜成像屈光状态的检测方法对模拟眼进行屈光度检测。分别设定模拟眼屈光状态为-3.00 D、-2.00 D、-1.00 D、0 D、+1.00 D、+2.00 D及+3.00 D。在不同屈光状态下,分别测量模拟眼的屈光度10次。记录每次模拟眼的理论屈光度、图案板距离以及实际测量的屈光度。不同屈光状态下测量的屈光度值,采用均数±标准差表示。计算测量值相对于理论值的偏倚,即模拟眼屈光不正的理论值与测量值平均值的差值。采用组内相关系数,分析理论值与测量值的一致性。 结果当模拟眼的屈光状态设定为-3.00 D、-2.00 D、-1.00 D、0 D、+1.00 D、+2.00 D及+3.00 D时,基于屈光补偿测量视网膜屈光度的平均值分别为(2.99±0.07)D、(-1.98±0.07)D、(-0.96±0.07)D、(0.19±0.07)D、(1.18±0.10)D、(2.37±0.11)D及(3.48±0.09)D;测量的偏倚分别为-0.01 D、-0.02 D、-0.04 D、-0.19 D、-0.18 D、-0.37 D及-0.48 D。经Pearson相关分析,模拟眼测量偏倚的绝对值与理论屈光度成正相关,且具有统计学意义(r=0.964,P<0.05)。10次实际测量的平均值与理论值有较好的一致性,具有统计学意义(ICC=0.997,P<0.05)。当模拟眼处于-3.00 D、-2.00 D及-1.00 D(即屈光状态为近视)时,累计共测量30次。结果模拟眼理论屈光度与实际测量值有较好的一致性,具有统计学意义(ICC=0.996,P<0.05)。当模拟眼处于+1.00 D、+2.00 D及+3.00 D(即屈光状态为远视)时,累计共测量30次。结果模拟眼理论屈光度与实际测量值有较好的一致性,具有统计学意义(ICC=0.984,P<0.05)。 结论在模拟眼中基于屈光补偿技术进行视网膜成像屈光状态的测量方法准确且有效,该测量方法具有可行性。

关 键 词:屈光补偿  视网膜成像  屈光状态  模拟眼  可行性  
收稿时间:2020-05-08

A refractive state measurement for retina based on optical imaging refractive compensation technology
Authors:Jiaxin Tian  Shifei Wei  Shiming Li  Hanruo Liu  Qing Zhang  Yan Cui  Jingyun Guo  Yequan Huang  Xuechuan Dong  Ningli Wang
Affiliation:1. Beijing Tongren Hospital, Capital Medical University, Beijing Tongren Eye Cener, Beijing Institute of Ophthalmology, Beijing Ophthalmology & Visual Sciences Key Lab. 100730, China; Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University & Capital Medical University, Beijing Tongren Hospital, Beijing 100730, China 2. NIMO Ophthalmology Research Institute, Beijing 100176, China
Abstract:ObjectiveTo explore the feasibility of using refractive compensation technology through optical imaging to measure the retinal refractive state. MethodsThe refractive states of simulation eyes were measured by refractive compensation to retinal imaging. The diopters were measured for 10 times under different refractive states. The theoretical diopters, pattern plate distance, and the measured diopters were recorded at each time. Mean ± standard deviation was used to indicate the diopter value under different refractive states. The bias, which was defined as the difference between the the oretical diopter and the mean of the measured diopters, was calculated. The internal correlation coefficient (ICC) was analyzed for the consistency of the theoretical diopters and the measured diopters. ResultsWhen the theoretical diopters of the simulation eye were set as -3.00 D, -2.00D, -1.00 D, 0.00 D, + 1.00 D, + 2. 00 D, and + 3.00 D, the measured diopters based on refractive compensation to retinal imaging at different refractive states were (2.90±0.07) D, (-1.98±0.07) D, (-0.96±0.07) D, (0.19±0.07) D, (1.18±0.10) D, (2.37±0.1) D, and (3.48±0.09) D, respectively; the biases were -0.01 D, -0.02 D, -0.04 D, -0.19 D, -0.18 D, -0.37 D, -0.48 D, respectively.Pearson correlation analysis showed the absolute values of the bias was positively correlated with the theoretical diopters(r=0.964, P<0.05). The mean of measured diopter in 10 times was in good agreement with the theoretical diopter. There was a statistical significance between results (ICC=0.997, P<0.05). When the simulation eyeswere set as -3.00 D, -2.00 D, and -1.00 D, which were simulated myopia, 30 times of measurements were made.The result showed the theoretical diopters of the simulation eye were in good agreement with the measured diopters with statistical significance (ICC=0.996, P<0.05). When the simulation eyes were set as + 3.00 D, + 2.00 D, and + 1.00 D, which were simulated hyperopia, 30 times of measurements were made. The result showed the theoretical diopters of the simulation eye were in good agreement with the measured diopters with statistical significance (ICC=0.984, P<0.05). ConclusionsThe measurement of refractive state by refractive compensation to retinal imaging in the simulation eye is accurate, effective, and feasible.
Keywords:Refractive compensation  Retinal imaging  Refractive state  The simulation eye  Feasibility  
点击此处可从《中华眼科医学杂志(电子版)》浏览原始摘要信息
点击此处可从《中华眼科医学杂志(电子版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号