首页 | 官方网站   微博 | 高级检索  
     


Characterisation of enamel white spot lesions using X-ray micro-tomography
Authors:Huang Tiffany T Y  Jones Allan S  He Li Hong  Darendeliler M Ali  Swain Michael V
Affiliation:Biomaterials Science Research Unit, Faculty of Dentistry, University of Sydney, NSW, Australia.
Abstract:OBJECTIVES: The aim of this study was to characterise the mineral density (MD) of natural enamel white spot lesions (WSLs) using X-ray micro-tomography calibrated with different density hydroxyapatite phantoms. METHODS: Seven natural WSLs from four extracted non-carious premolar teeth were scanned at a voxel size of 7.6 microm using a desktop X-ray micro-tomography system. Five hydroxyapatite phantoms (sintered pellets of hydroxyapatite powder) with densities ranging from 1.52 to 3.14 g/cm(3) were used as calibration standards for each scan. Three-dimensional image reconstruction enabled MD gradients throughout the lesion to be quantified using an MD calibration equation derived from hydroxyapatite phantoms. Background noise generated during the measurement of MD was reduced using a Gaussian filter. RESULTS: Gaussian filter reduced the signal-to-noise ratio (standard deviation) significantly while the basic MD information (average value) remained intact. The mineral gradients through the WSLs examined were compared and are discussed in terms of existing literature. The MD of sound enamel, apparent intact surface layer of WSL, and lowest level of WSL was found to be 2.65-2.89 g/cm(3), 2.23-2.58 g/cm(3) and 1.48-2.03 g/cm(3), respectively. Our MD results are comparable with other studies. CONCLUSIONS: X-ray micro-tomography is a sensitive in vitro technique capable of characterising and quantifying MD of small non-cavitated WSLs. This method has a promising potential for future carious and quantitative remineralisation studies.
Keywords:Mineral density  Micro-computed tomography  White spot lesion  Enamel  Caries  Demineralisation  Hydroxyapatite
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号