首页 | 官方网站   微博 | 高级检索  
     


Simultaneous multi‐slice spin‐ and gradient‐echo dynamic susceptibility‐contrast perfusion‐weighted MRI of gliomas
Authors:Misung Han  Baolian Yang  Brice Fernandez  Marisa Lafontaine  Paula Alcaide‐Leon  Angela Jakary  Brian L Burns  Melanie A Morrison  Javier E Villanueva‐Meyer  Susan M Chang  Suchandrima Banerjee  Janine M Lupo
Abstract:Although combined spin‐ and gradient‐echo (SAGE) dynamic susceptibility‐contrast (DSC) MRI can provide perfusion quantification that is sensitive to both macrovessels and microvessels while correcting for T1‐shortening effects, spatial coverage is often limited in order to maintain a high temporal resolution for DSC quantification. In this work, we combined a SAGE echo‐planar imaging (EPI) sequence with simultaneous multi‐slice (SMS) excitation and blipped controlled aliasing in parallel imaging (blipped CAIPI) at 3 T to achieve both high temporal resolution and whole brain coverage. Two protocols using this sequence with multi‐band (MB) acceleration factors of 2 and 3 were evaluated in 20 patients with treated gliomas to determine the optimal scan parameters for clinical use. ΔR2*(t) and ΔR2(t) curves were derived to calculate dynamic signal‐to‐noise ratio (dSNR), ΔR2*‐ and ΔR2‐based relative cerebral blood volume (rCBV), and mean vessel diameter (mVD) for each voxel. The resulting SAGE DSC images acquired using MB acceleration of 3 versus 2 appeared visually similar in terms of image distortion and contrast. The difference in the mean dSNR from normal‐appearing white matter (NAWM) and that in the mean dSNR between NAWM and normal‐appearing gray matter were not statistically significant between the two protocols. ΔR2*‐ and ΔR2‐rCBV maps and mVD maps provided unique contrast and spatial heterogeneity within tumors.
Keywords:dynamic susceptibility‐contrast imaging  gliomas  perfusion  simultaneous multi‐slice acceleration  spin‐echo and gradient‐echo EPI
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号