首页 | 官方网站   微博 | 高级检索  
     


Filtered particle tracking in isotropic turbulence and stochastic modeling of subgrid-scale dispersion
Authors:Jacek Pozorski  Sourabh V Apte
Affiliation:1. Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Gdańsk, Poland;2. School of Mechanical, Industrial, and Manufacturing Engineering, Oregon State University, 204 Rogers Hall, Corvallis, OR 976331, USA
Abstract:A numerical study based on the Eulerian–Lagrangian formulation is performed for dispersed phase motion in a turbulent flow. The effect of spatial filtering, commonly employed in large-eddy simulations, and the role of the subgrid scale turbulence on the statistics of heavy particles, including preferential concentration, are studied through a priori analysis of DNS of particle-laden forced isotropic turbulence. In simulations where the subgrid scale kinetic energy attains 30–35% of the total we observe the impact of residual fluid motions on particles of a smaller inertia. It is shown that neglecting the influence of subgrid scale fluctuations has a significant effect on the preferential concentration of those particles. A stochastic Langevin model is proposed to reconstruct the residual (or subgrid scale) fluid velocity along particle trajectories. The computation results for a selection of particle inertia parameters are performed to appraise the model through comparisons of particle turbulent kinetic energy and the statistics of preferential concentrations.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号