基于小波神经网络的木质材料缺陷模式识别 |
| |
作者姓名: | 孙建平 王逢瑚曹军 |
| |
作者单位: | 东北林业大学生物质材料科学与技术教育部重点实验室,哈尔滨,150040 |
| |
基金项目: | 国家自然科学基金资助项目,全国优秀博士学位论文作者专项基金资助项目,黑龙江省普通高等学校青年学术骨干资助项目 |
| |
摘 要: | 利用小波和神经网络对木质材料中密度纤维板的不同缺陷进行智能模式识别,研究采用Daubechies小波包对振动信号进行3层分解,计算信号在各频段所占的能量率,并以此作为样本对拓扑结构不同的BP神经网络进行训练,然后利用训练好的网络对缺陷的种类进行分类识别。结果表明,性质相近的两种贫胶缺陷应作为一类缺陷模式进行识别,单隐层和双隐层的BP网络对没有缺陷、鼓泡缺陷和贫胶缺陷3种模式的识别都很理想,但双隐层BP网络的推广性能较好,网络输出的波动性小。对中密度纤维板没有缺陷、鼓泡缺陷和贫胶缺陷智能识别的最佳网络是双层BP网络,网络第1隐层节点和第2隐层节点分别为20和6,对中密度纤维板缺陷模式识别的准确率为90%。
|
关 键 词: | 小波神经网络 木质材料 缺陷 模式识别 |
本文献已被 维普 万方数据 等数据库收录! |
| 点击此处可从《振动、测试与诊断》浏览原始摘要信息 |
|
点击此处可从《振动、测试与诊断》下载全文 |
|