首页 | 官方网站   微博 | 高级检索  
     

CDJY2500型压裂泵曲轴的力学性能分析
引用本文:易军,易先中,周元华,明祥贵,殷光品,陈辉,宋顺平.CDJY2500型压裂泵曲轴的力学性能分析[J].石油机械,2020(3):10-18.
作者姓名:易军  易先中  周元华  明祥贵  殷光品  陈辉  宋顺平
作者单位:;1.长江大学机械工程学院;2.中国石油集团渤海钻探工程有限公司工程技术研究院;3.湖北佳业石油机械股份有限公司;4.中国石油化工股份有限公司胜利油田分公司孤岛采油厂
基金项目:国家科技重大专项“钻井协同自动控制系统研发”(2016ZX05022006-004);“复杂结构井、丛式井设计与控制新技术”(2017ZX05009-003);国家自然科学基金项目“页岩和致密油气田高效开发建井基础研究”(U1762214、U1262108、51974035);国土资源部深部地质钻探技术重点实验室开放课题“井底机械振动固井增强深孔井筒质量的评价模型”(KF201806);湖北省技术创新专项“深部地热资源综合开发利用关键技术”(2016ACA181)。
摘    要:为了对五缸压裂泵曲轴进行优化设计,对CDJY2500型五缸压裂泵曲轴进行正常工作载荷下的受力综合分析,建立了压裂泵曲轴的有限元模型。采用有限元仿真计算方法及ANSYSWorkbench对10种危险工况和5种不同连杆载荷下的曲轴应力和总变形量分布规律进行分析。分析结果表明:曲轴的最大应力为180. 23 MPa,位于曲轴1#曲柄销的左侧圆角处,曲轴的总变形量在其两端较大、中间较小,最大为0. 067 815 mm,属于小变形;随着曲轴转角的增大,曲轴最大应力基本上先增大再减小,在180°转角时达到峰值;随着转角的增大,曲轴的总变形量有先逐渐减小后增大、再减小的趋势,在36°转角时取得最大值;最大应力和总变形量均随着连杆载荷的增加而增大,且呈线性关系。因此,在曲轴转动过程中,其危险点主要分布在曲轴颈的圆角处,连杆载荷对曲轴强度有重大影响。研究结果对压裂泵曲轴等关键部件的优化设计及动态性能研究具有重要意义。

关 键 词:五缸压裂泵  曲轴  应力  总变形  连杆载荷  有限元分析

Analysis of Mechanical Properties of Crankshaft on the CDJY2500 Fracturing Pump
Pump Yi Jun,Yi Xianzhong,Zhou Yuanhua,Ming Xianggui,Yin Guangpin,Chen Hui,Song Shunping.Analysis of Mechanical Properties of Crankshaft on the CDJY2500 Fracturing Pump[J].China Petroleum Machinery,2020(3):10-18.
Authors:Pump Yi Jun  Yi Xianzhong  Zhou Yuanhua  Ming Xianggui  Yin Guangpin  Chen Hui  Song Shunping
Affiliation:(School of Mechanical Engineering,Yangtze University;Engineering Research Institute,CNPC Bohai Drilling Engineering Company Limited;Hubei Jiaye Petroleum Machinery Co.,Ltd.;Gudao Oil Production Plant,Sinopec Shengli Oilfield Company;Changqing Drilling Company,CNPC Chuanqing Drilling Engineering Company Limited)
Abstract:To optimize the design of the crankshaft of a five-cylinder fracturing pump,and to perform a comprehensive analysis of the forces on the CDJY2500 five-cylinder fracturing pump crankshaft under normal working load,a finite element model for the crankshaft of the fracturing pump is established. The finite element simulation calculation method and ANSYS Workbench were used to analyze the crankshaft stress and total deformation distribution under 10 hazardous conditions and 5 different link loads. The analysis results show that the maximum stress of the crankshaft is 180. 23 MPa located at the left corner of the crankshaft 1# crank pin. The total deformation of the crankshaft is larger at its two ends and smaller in the middle with the maximum value of 0. 067 815 mm,which is a small deformation. With the increase of the crank angle,the maximum stress of the crankshaft generally increases and then decreases,reaching a peak at 180°. As the angle of the crank increases,the total deformation of the crankshaft gradually decreases and then increases,and decreases. The maximum value was observed at the angle of 36°. The maximum stress and the total deformation increase linearly with the load of the link. Therefore,during the crankshaft rotation,its hazardous points are mainly distributed at the corners of the crankshaft neck,and the load of the link has a significant impact on the strength of the crankshaft. The research results are of great significance to the optimization of the crankshaft and other key components of the fracturing pump.
Keywords:five-cylinder fracturing pump  crankshaft  stress  total deformation  connecting rod load  finite element analysis
本文献已被 CNKI 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号