首页 | 官方网站   微博 | 高级检索  
     


A new method to compare vehicle emissions measured by remote sensing and laboratory testing: high-emitters and potential implications for emission inventories
Authors:Smit Robin  Bluett Jeff
Affiliation:
  • a University of Queensland, School of Civil Engineering, Centre for Transport Strategy, Brisbane, QLD 4072, Australia
  • b National Institute of Water and Atmospheric Research (NIWA), Christchurch, New Zealand
  • Abstract:A new method is presented which is designed to investigate whether laboratory test data used in the development of vehicle emission models adequately reflects emission distributions, and in particular the influence of high-emitting vehicles. The method includes the computation of a ‘high-emitter’ or ‘emission distribution’ correction factor for use in emission inventories. In order to make a valid comparison we control for a number of factors such as vehicle technology, measurement technique and driving conditions and use a variable called ‘Pollution Index’ (g/kg). Our investigation into one vehicle class has shown that laboratory and remote sensing data are substantially different for CO, HC and NOx emissions, both in terms of their distributions as well as in their mean and 99-percentile values. Given that the remote sensing data has larger mean values for these pollutants, the analysis suggests that high-emitting vehicles may not be adequately captured in the laboratory test data.The paper presents two different methods for the computation of weighted correction factors for use in emission inventories based on laboratory test data: one using mean values for six ‘power bins’ and one using multivariate regression functions. The computed correction factors are substantial leading to an increase for laboratory-based emission factors with a factor of 1.7-1.9 for CO, 1.3-1.6 for HC and 1.4-1.7 for NOx (actual value depending on the method). However, it also clear that there are points that require further examination before these correction factors should be applied. One important step will be to include a comparison with other types of validation studies such as tunnel studies and near-road air quality assessments to examine if these correction factors are confirmed. If so, we would recommend using the correction factors in emission inventories for motor vehicles.
    Keywords:ADR  Australian Design Rule  PI  Pollution Index  CF  High-Emitter Correction Factor  WCF  Weighted High-Emitter Correction Factor
    本文献已被 ScienceDirect PubMed 等数据库收录!
    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

    京公网安备 11010802026262号